Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Agroforestry as a sustainable land use option to reduce wildfires risk in European Mediterranean areas


Wildfires have always been an integral part of the ecology of many terrestrial ecosystems, but their frequency is increasing in many parts of the world. Wildfires were once a natural phenomenon, but after humans learned to control fire, it has been used as a management tool to increase soil fertility, to regenerate natural vegetation for grazing and to control competing vegetation. However, currently uncontrolled wildfires threaten not only natural vegetation, landscape biodiversity, communities and economies, but they also release large amounts of carbon dioxide, thus contributing to global temperature increase. Higher temperatures and drier summers have increased the risk of wildfires in biodiversity rich areas of European Mediterranean countries and have resulted in human casualties. The aim of this article is to investigate whether agroforestry, the practice of integrating woody vegetation and agricultural crops and/or livestock, could be a management tool to reduce wildfires in European Mediterranean countries. Fire events from 2008 to 2017 and data of land cover and land use were spatially correlated. Results indicated that agroforestry areas had fewer wildfire incidents than forests, shrublands or grasslands, providing evidence of the potential of agroforestry to reduce fire risk and protect ecosystems.

This is a preview of subscription content, log in to check access.

Fig. 1

(figure reproduced from den Herder et al. 2017)


  1. Alessio GA, Peñuelas J, Llusià J, Ogaya R, Estiarte M, De Lillis M (2008) Influence of water and terpenes on flammability in some dominant Mediterranean species. Int J Wildland Fire 17:274–286

  2. Arellano S, Vega JA, Ruíz AD, Arellano A, Álvarez JG, Vega DJ, Pérez E (2017) Foto-guía de combustibles forestales de Galicia y comportamiento del fuego asociado. Andavira Editora S. L, Santiago de Compostela

  3. Baeza MJ, Santana VM, Pausas JG, Vallejo VR (2011) Successional trends in standing dead biomass in Mediterranean basin species. J Veg Sci 22:467–474. https://doi.org/10.1111/j.1654-1103.2011.01262.x

  4. Bolle HJ (ed) (2003) Mediterranean climate—variability and trends. Springer, Berlin, p 372

  5. den Herder M, Moreno G, Mosquera-Losada RM, Palma JHN, Sidiropoulou A, Santiago Freijanes JJ, Crous-Duran J, Paulo JA, Tomé M, Pantera A, Papanastasis VP, Mantzanas K, Pachana P, Papadopoulos A, Plieninger T, Burgess PJ (2017) Current extent and stratification of agroforestry in the European Union. Agric Ecosyst Environ 241:121–132. https://doi.org/10.1016/j.agee.2017.03.005

  6. Dopazo C, Suárez J (2004) Fuel control management experiences with livestock grazing in fire-break areas in the region of Valencia (Spain). In: Mosquera-Losada MR, McAdam J, Rigueiro-Rodríguez A (eds) Book of abstracts. Silvopastoralism and sustainable management. International conference. Unicopia, Lugo, p 203

  7. EEA (2016) Meteorological and hydrological droughts. https://www.eea.europa.eu/data-and-maps/indicators/river-flow-drought-2/assessment. Accessed 20 Nov 2019

  8. EFFIS (2018) European forest fire information system. https://effis.jrc.ec.europa.eu/. Accessed 20 Feb 2018

  9. FAO (2016) State of the World’s Forests 2016. Forests and agriculture: land-use challenges and opportunities. FAO, Rome

  10. Ganteaume A, Marielle J, Corinne L-M, Thomas C, Laurent B (2011) Effects of vegetation type and fire regime on flammability of undisturbed litter in Southeastern France. For Ecol Manag 261(12):2223–2231. https://doi.org/10.1016/j.foreco.2010.09.046

  11. Grove AT, Rackham O (2001) The nature of Mediterranean Europe. An ecological history. Yale University Press, New Haven

  12. Jahns S (2005) The Holocene history of vegetation and settlement at the coastal site of Lake Voulkaria in Acarnania, western Greece. Veg Hist Archaebot 14:55–66

  13. Köppen W (1918) Une nouvelle classification generale des climats. Rev Gen Sci 30:550–554. https://doi.org/10.1007/s00334-004-0053-8

  14. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x

  15. Lozano OM, Salis M, Ager AA, Arca B, Alcasena FJ, Monteiro AT, Finney MA, Del Giudice L, Scoccimarro E, Spano D (2017) Assessing climate change impacts on wild fire exposure in Mediterranean areas. Risk Anal 37:1898–1916. https://doi.org/10.1111/risa.12739

  16. LUCAS (2015) Land use and land cover survey. https://ec.europa.eu/eurostat/statistics-explained/index.php/LUCAS_-_Land_use_and_land_cover_survey#Defining_land_use.2C_land_cover_and_landscape. Accessed 20 Feb 2018

  17. Moreno G, Franca A, Pinto-Cprreia MT, Godinho S (2014) Multifunctionality and dynamics of silvopastoral systems. Options Méditerranéennes. Forage Resources and Ecosystem Services Provided by Mountain and Mediterranean Grasslands and Rangelands, no. 109

  18. Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J (2006) Potential impact of climate change on fire risk in the Mediterranean area. Climate Res 31:85–95. https://doi.org/10.3354/cr031085

  19. Mosquera-Losada MR, Santiago Freijanes JJ, Pisanelli A, Rois M, Smith J, den Herder M, Moreno G, Lamersdorf N, Ferreiro DN, Balaguer F, Pantera A, Papanastasis V, Rigueiro-Rodríguez A, Aldrey JA, Gonzalez-Hernández P, Fernández-Lorenzo JL, Romero-Franco R, Lampkin N, Burgess PJ (2018) Agroforestry in the European common agricultural policy. Agrofor Syst 92(4):1117–1127. https://doi.org/10.1007/s10457-018-0251-5

  20. Nunes MCS, Vasconcelos MJ, Pereira JMC, Dasgupta N, Alldredge RJ, RegoLand FJ (2005) Land cover type and fire in Portugal: do fires burn land cover selectively? Landsc Ecol 20:661–673. https://doi.org/10.1007/s10980-005-0070-8

  21. Ortega M, Saura S, González-Avila S, Gómez-Sanz V, Elena-Rossello R (2012) Landscape vulnerability to wildfires at the forest-agriculture interface: half-century patterns in Spain assessed through the SISPARES monitoring framework. Agrofor Syst 85(3):1–19. https://doi.org/10.1007/s10457-011-9423-2

  22. Papanastasis VP, Mantzanas K, Dini-Papanastasi O, Ispikoudis I (2009) Traditional agroforestry systems and their evolution in Greece. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losado M (eds) Agroforestry in Europe. Advances in agroforestry, vol 6. Springer, Dordrecht, pp 89–109. https://doi.org/10.1007/978-1-4020-8272-6_5

  23. Paris P, Camilli F, Rosati A, Mantino A, Mezzalira G, Dalla VC, Franca A, Seddaiu G, Pisanelli A, Lauteri M, Brunori A, Re GA, Sanna F, Ragaglini G, Mele M, Ferrario V, Burgess PJ (2019) What is the future for agroforestry in Italy? Agroforest Syst. https://doi.org/10.1007/s10457-019-00346-y

  24. Plieninger T, Draux H, Fagerholm N, Bieling C, Bürgi M, Kizos Th, Kuemmerle T, Primdahl J, Verburg P (2016) The driving forces of landscape change in Europe: a systematic review of the evidence. Land Use Policy 57:204–214. https://doi.org/10.1016/j.landusepol.2016.04.040

  25. Quezel P (1978) Analysis of the flora of Mediterranean and Saharan Africa. Ann Mo Bot Garden 65(2):479–534. https://doi.org/10.2307/2398860

  26. Quezel P, Tomaselli R, Morandini R (1977) Mediterranean forests and maquis: ecology, conservation and management. MAB Technical notes 2. UNESCO, Paris, p 94

  27. Richardson D, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809. https://doi.org/10.1111/j.1472-4642.2011.00782.x

  28. Rigueiro-Rodríguez A, Mosquera-Losada RM, López L (1999) Silvopastoral systems in prevention of forest fires in the forests of Galicia (NW Spain). Agrofor Forum 9(3):3–8

  29. Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (2008) Agroforestry in Europe: current status and future prospects. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8272-6

  30. Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (2009) Agroforestry in Europe. Advances in agroforestry. Kluwer, Dordrecht

  31. Ruiz-Mirazo J, Belén RA, González-Rebollar JL (2011) Two-Year evaluation of fuelbreaks grazed by livestock in the wildfire prevention program in Andalusia (Spain). Agric Ecosyst Environ 141(1–2):13–22. https://doi.org/10.1016/j.agee.2011.02.002

  32. Salis M, Laconi M, Ager AA, Alcasena FJ, Arca B, Lozano OM, Oliveira AS, Spano D (2016) Evaluating alternative fuel treatment strategies to reduce wildfire losses in a Mediterranean area. For Ecol Manag 368:207–221. https://doi.org/10.1016/j.foreco.2016.03.009

  33. San-Miguel-Ayanz J, Camia A (2010) The European forest fire information system: concept, status and development. In: Viegas DX (ed.) Proceedings of the VI international conference on forest fire research, ADAI/CEIF, Coimbra, Portugal

  34. San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A, Tinner W, Ballian D, Beck P, Birks HJB, Eaton E, Enescu CM, Pasta S, Popescu I, Ravazzi C, Welk E, Abad Viñas R, Azevedo JC, Barbati A, Barredo JI, Benham SE, Boca R, Bosco C, Caldeira MC, Cerasoli S, Chirici G, Cierjacks A, Conedera M, Da Ronch F, Di Leo M, García-Viñas JI, Gastón González A, Giannetti F, Guerrero Hue N, Guerrero Maldonado N, López MJ, Jonsson R, Krebs P, Magni D, Mubareka S, Nieto Quintano P, Oliveira S, Pereira JS, Pividori M, Räty M, Rinaldi F, Saura S, Sikkema R, Sitzia T, Strona G, Vidal C, Vilar L, Zecchin B (2016) European atlas of forest tree species. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) Publications office of the European Union, Luxembourg, p 200. ISBN: 978-92-79-52833-0. https://doi.org/10.2788/4251

  35. San-Miguel-Ayanz J, Durrant T, Boca R, Libertà G, Branco A, de Rigo D, Ferrari D, Maianti P, Vivancos TA, Costa H, Lana F, Löffler P, Nuijten D, Ahlgren AC, Leray T (2018) Forest fires in Europe, Middle East and North Africa 2017. EUR 29318 EN. ISBN 978-92-79-92831-4. https://doi.org/10.2760/663443

  36. Santana VM, Baeza JM, Valdecantos A, Vallejo RV (2018) Redirecting fire-prone Mediterranean ecosystems toward more resilient and less flammable communities. J Environ Manag 215:108–115. https://doi.org/10.1016/j.jenvman.2018.03.063

  37. Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132(1):97–109. https://doi.org/10.1016/S0378-1127(00)00383-2

  38. Schwilk DW (2003) Flammability is a niche-construction trait: canopy architecture affects fire intensity. Am Nat 162:725–733

  39. Seidl R, Schelhaas MJ, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Climate Change. https://doi.org/10.1038/nclimate2318

  40. Thirgood VC (1981) Man and the Mediterranean forest: a history of resource depletion. Academic Press, London, p 194

  41. Ulbrich U, Lionello P, Belusic D, Jacobeit J, Knippertz P, Kuglitsch FG, Leckebusch GC, Luterbacher J, Maugeri M, Maheras P, Nissen KM, Pavan V, Pinto JG, Saaroni H, Seubert S, Toreti A, Xoplaki E, Ziv B (2012) Climate of the Mediterranean: synoptic patterns, temperature, precipitation, winds and their extremes. In: Lionello P (ed) Climate of the Mediterranean Region—from the past to the future. Elsevier, Sydney, pp 301–346. https://doi.org/10.1016/B978-0-12-416042-2.00005-7

  42. Verkerk PJ, Martinez de Arano I, Palahí M (2018) The bio-economy as an opportunity to tackle wildfires in Mediterranean forest ecosystems. For Policy Econ 86:1–3. https://doi.org/10.1016/j.forpol.2017.10.016

  43. Wolf K, DiTomaso J (2016) Management of blue gum eucalyptus in California requires region-specific consideration. Calif Agric 70(1):39–47. https://doi.org/10.3733/ca.v070n01p39

Download references


This research was realized within the AGFORWARD project (Grant Agreement No 613520) and has been co-funded by the European Commission, Directorate General for Research and Innovation, within the 7th Framework Programme of RTD, Theme 2—Biotechnologies, Agriculture and Food and by the Hellenic Ministry of Education, Research and Religion, General Secretariat for Research and Technology. Data were provided by the European Forest Fire Information System—EFFIS (https://effis.jrc.ec.europa.eu) of the European Commission Joint Research Centre.

Author information

Correspondence to Christos Damianidis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Damianidis, C., Santiago-Freijanes, J.J., den Herder, M. et al. Agroforestry as a sustainable land use option to reduce wildfires risk in European Mediterranean areas. Agroforest Syst (2020). https://doi.org/10.1007/s10457-020-00482-w

Download citation


  • Land uses
  • Management
  • Ecosystems
  • Climate change
  • Vegetation types