Skip to main content

Advertisement

Log in

Quassia amara L. diameter and total height under different light conditions: implications for the management of agroecosystems

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Quassia amara L. is a semi-sciophyte species that can be found growing as a large shrub or a small tree in Neotropical rainforests. It is traditionally harvested as a non-wood forest product for culinary, medicinal and insecticidal uses. Lack of knowledge on the ecological conditions that support tree growth limits the development of sustainable forest management plans of natural forests and the development of new agroecological cultivation models. The overall objectives of the present work are to (1) compare the Quassia amara L. growth in different forest structures; (2) evaluate the impact of light conditions on Quassia amara L. diameter growth, total height growth and height–diameter relationship and (3) discuss implications for the sustainable management of the species in agroecosystems. Light conditions are characterized at the tree level by the crown illumination index (cii), which is a visual and ordinal index. Results show that tree growth varies between plots with different forest structures and light conditions. The cii was able to characterize light conditions. Best light conditions were different for diameter and total height growth: cii value of 5.0 (tree crown completely exposed to overhead and lateral direct light) and cii value of 3.5 (tree crown exposed to some vertical/overhead direct light and low direct light), respectively. The cii did not affect the height–diameter relationship. A value of cii equal to 4 was found as an intermediate condition and recommended for the establishment of new agroecosystems including the Quassia amara L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida A, Tomé M (2010) Field sampling of cork value before extraction in Portuguese ‘montados’. Agrofor Syst 79:419–430. https://doi.org/10.1007/s10457-009-9260-8

    Article  Google Scholar 

  • Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric Ecosyst Environ 93(1–3):1–24. https://doi.org/10.1016/S0167-8809(02)00085-3

    Article  Google Scholar 

  • Bellingham PJ, Tanner EVJ (2006) The influence of topography on tree growth, mortality, and recruitment in a tropical montane forest. Biotropica 32:378–384. https://doi.org/10.1111/j.1744-7429.2000.tb00484.x

    Article  Google Scholar 

  • Bertani S, Houel E, Stien D, Chevolot L, Jullian V, Garavito G, Bourdy G, Deharo E (2006) Simalikalactone D is responsible for the antimalarial properties of an Amazonian traditional remedy made with Quassia amara L. (Simaroubaceae). J Ethnopharmacol 108(1):155–157

    Article  CAS  Google Scholar 

  • Brown NR (1995) The autecology and agroforesty potential of the bitterwood tree Quassia amara L. ex. Blom (Simaroubaceae). PhD thesis. Cornell University

  • Burkhart HE, Tomé M (2012) Modeling forest trees and stands. Springer, Berlin, p 457

    Book  Google Scholar 

  • Burlando B, Cornara L (2017) Revisiting Amazonian plants for skin care and disease. Cosmetics 4(3):25. https://doi.org/10.3390/cosmetics4030025

    Article  CAS  Google Scholar 

  • Castilho VC, Magnusson WE, Araújo RNO, Luizão RCC, Luizão FJ, Lima AP, Higuchi N (2006) Variation in aboveground tree live biomass in a central Amazonian Forest: effects of soil and topography. For Ecol Manag 234(1):85–96. https://doi.org/10.1016/j.foreco.2006.06.024

    Article  Google Scholar 

  • Chazdon RL, Guariguata MR (2016) Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48(6):716–730. https://doi.org/10.1111/btp.12381

    Article  Google Scholar 

  • Cifuentes MF (1996) Distribución espacial y potencial de aprovechamiento de Quassia amara L. (Simaroubaceae) en Río San Juan, Nicaragua. BsC thesis. Instituto Tecnologico de Costa Rica. Departamento de Ingenieria Forestal. Cartago. Costa Rica

  • Clark DA, Clark DB (1992) Life history diversity of canopy and emergent trees in a neotropical rain forest. Ecol Monogr 62(3):315–344

    Article  Google Scholar 

  • Clark DA, Clark DB (1999) Assessing the growth of tropical rain forest trees: issues for forest modeling and management. Ecol Appl 9(3):981–997

    Article  Google Scholar 

  • Croat T (1978) Flora of Barro Colorado. Standford University Press, Standford, p 956

    Google Scholar 

  • Crouzeilles R, Ferreira MS, Chazdon RL, Lindenmayer DB, Sansevero JB, Monteiro L, Iribarrem A, Latawiec AE, Strassburg BBN (2017) Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Appl Ecol 3(11):e1701345. https://doi.org/10.1126/sciadv.1701345

    Article  Google Scholar 

  • Dawkins HC, Philip MS (1998) Tropical moist forest silviculture and management: a history of success and failure. CAB International, Wallingford, p 377

    Google Scholar 

  • Dhakal P, Paudel DR, Baral DR (2016) Inventory of non-timber forest products in Western Nepal and strategies for sustainable management. Int J Environ 5(3):87–103

    Article  Google Scholar 

  • FAO (1995) Non-wood forest products for rural income and sustainable forestry. Non-wood forest products 7. ISBN 92-5-103765-5. http://www.mekonginfo.org/assets/midocs/0001410-environment-non-wood-forest-products-for-rural-income-and-sustainable-forestry.pdf. Accessed 25 Aug 2019

  • Guariguata MR, García-Fernández C, Sheil D, Nasi R, Herrero-Jáuregui C, Cronkleton P, Ingrama V (2010) Compatibility of timber and non-timber forest product management in natural tropical forests: perspectives, challenges, and opportunities. For Ecol Manag 259(3):237–245. https://doi.org/10.1016/j.foreco.2009.11.013

    Article  Google Scholar 

  • Haggar JP, Briscoe CB, Butterfield RP (1998) Native species: a resource for the diversification of forestry production in the lowland humid tropics. For Ecol Manag 106(2–3):195–203. https://doi.org/10.1016/S0378-1127(97)00311-3

    Article  Google Scholar 

  • Houel E, Bertani S, Bourdy G, Deharo E, Jullian V, Valentin A, Chevalley S, Stien D (2009) Quassinoid constituents of Quassia amara L. leaf herbal tea. Impact on its antimalarial activity and cytotoxicity. J Ethnopharmacol 126(1):114–118

    Article  CAS  Google Scholar 

  • Huang S, Price D, Titus S (2000) Development of ecoregion-based height-diameter models for white spruce in boreal forests. For Ecol Manag 129:125–141

    Article  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006, 2nd edn. World soil resources reports no. 103, FAO, Rome

  • Keeling HC, Phillips OL (2007) A calibration method for the crown illumination index for assessing forest light environments. For Ecol Manag 242:431–437. https://doi.org/10.1016/j.foreco.2007.01.060

    Article  Google Scholar 

  • Leigue L (1997) Ecological elements for silviculture of Quassia amara in Talamanca, Costa Rica. Master thesis. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Turrialba. Costa Rica. http://hdl.handle.net/11554/4829. Accessed 25 Aug 2019

  • Ludvig A, Tahvanainen V, Dickson A, Evard C, Kurttila M, Cosovic M, Chapman E, Wilding M, Weiss G (2016) The practice of entrepreneurship in the non-wood forest products sector: support for innovation on private forest land. For Policy Econ 66:31–37. https://doi.org/10.1016/j.forpol.2016.02.007

    Article  Google Scholar 

  • Marmillod D, Chang Y, Bedoya R (1995) Plan de aprovechamiento sostenible de Quassia amara em la Reserva Indigena de Kekoldi. In: Ocampo RA (ed) Potencial de Quassia amara como insecticida natural. Coleccion diversidade biológica y desarrolo sustentable. IV. Metodologías. Serie Técnica. Informe Técnico nº 267. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Proyeto Conservación para el Desarrollo Sostenible em América Central (Olafo). Turrialba, Costa Rica

  • Ministerio del Ambiente y Energía (2013) Serie e brillo solar en Cota Rica. Instituto Meteorológico Nacional. https://www.imn.ac.cr/documents/10179/20909/Series+de+Brillo+Solar+en+Costa+Rica. Accessed 25 Aug 2019

  • Nair PKR, Latt CR (1998) Directions in tropical agroforestry research. Forestry sciences, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9008-2_10

    Book  Google Scholar 

  • Ocampo RA (1995) Potencial de Quassia amara como insecticida natural. Coleccion diversidade biológica y desarrolo sustentable. IV. Metodologías. Serie Técnica. Informe Técnico nº 267. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Proyeto Conservación para el Desarrollo Sostenible em América Central (Olafo). Turrialba. Costa Rica

  • Ocampo R, Balick MJ (2009) Plants of Semillas Sagradas: An Ethnomedicinal Garden in Costa Rica. Finca Luna Nueva Extractos, San Carlos, p 109

    Google Scholar 

  • Ocampo R, Rojas RD (2006) Cultivo, conservación e industrialización del hombre grande (Quassia amara). Bougainvillea, San José, p 70

    Google Scholar 

  • Painkra M, Dutta J, Ranga MM (2017) Status survey of non wood forest products in Surgujadistrict of Chhattisgarh: India. Appl For Ecol 5(2):20–27

    Google Scholar 

  • Paulo JA, Tomé J, Tomé M (2011) Nonlinear fixed and random generalized height-diameter models for Portuguese cork oak stands. Ann For Sci 68:295–309

    Article  Google Scholar 

  • Picard N (2019) Asymmetric competition can shape the size distribution of trees in a natural tropical forest. For Sci. https://doi.org/10.1093/forsci/fxz018

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-Plus. Statistics and computing series. Springer, New York, p 528

    Google Scholar 

  • Pullanikkatil D, Shackleton CM (2019) Poverty reduction strategies and non-timber forest products. In: Pullanikkatil D, Shackleton C (eds) Poverty reduction through non-timber forest products. Sustainable development goals series. Springer, Cham. https://doi.org/10.1007/978-3-319-75580-9_1

    Chapter  Google Scholar 

  • Rosskopf E, Morhart C, Nahm M (2017) Modelling shadow using 3D tree models in high spatial and temporal resolution. Remote Sens 9(7):719. https://doi.org/10.3390/rs9070719

    Article  Google Scholar 

  • Salazar-Dıaz R, Tixier P (2019) Effect of plant diversity on income generated by agroforestry systems in Talamanca, Costa Rica. Agrofor Syst 93:571–580. https://doi.org/10.1007/s10457-017-0151-0

    Article  Google Scholar 

  • SAS Institute Inc (2011) Introduction to regression procedures (chapter). SAS/STAT 93 user’s guide. SAS Institute Inc, Cary, p 50

    Google Scholar 

  • Sedjo RA, Botkin D (2010) Using foret plantations to spare natural forests. Environ Sci Policy Sustain Dev 39(10):14–30. https://doi.org/10.1080/00139159709604776

    Article  Google Scholar 

  • Shackleton CM, Pandey AK (2014) Positioning non-timber forest products on the development agenda. For Policy Econ 38:1–7. https://doi.org/10.1016/j.forpol.2013.07.004

    Article  Google Scholar 

  • Shackleton S, Shackleton CM, Shanley P (2011) Non-timber forest products in the global context. Tropical forestry, vol 7. Springer, Berlin. https://doi.org/10.1007/978-3-642-17983-9

    Book  Google Scholar 

  • Silva SR, Buitrón X, Oliveira LH, Martins MV (2001) Plantas medicinales de Brasil: Aspectos generales sobre legislación y comercio. Quito, Ecuador

  • Solano J (1992) Características Básicas del Período Seco en la Vertiente del Pacífico de Costa Rica. Tesis para optar al grado de Licenciatura en Geografía. Escuela de Ciencias Geográficas. Universidad Nacional de Costa Rica. In: Solano J, Villalobos R (eds) Regione y subregione climáticas de Costa Rica. Instituto Meteorológico Nacional. https://www.imn.ac.cr/documents/10179/20909/Regionalizaci%C3%B3n+clim%C3%A1tica+de+Costa+Rica. Accessed 25 Aug 2019

  • Tomé M, Barreiro S, Paulo JA, Tomé J (2006) Modelling tree and stand growth with growth functions formulated as age independent difference equations. Can J For Res 36(7):1621–1630. https://doi.org/10.1139/X06-065

    Article  Google Scholar 

  • Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48:619–629

    Article  Google Scholar 

  • Valle GRR, Barbosa KO, Villalobos R (2000) Evaluación de los productos forestales no madereros en América Central. In: FAO (ed) Evaluation de los recursos forestales mundiales 2000. Evaluación de los productos forestales no madereros en América Central. Programa de Evaluación de los Recursos Forestales. Forest Resources Assessment Wp 22. http://www.fao.org/3/ae159s/ae159s00.htm

  • Vanclay JK (1994) Modelling forest growth and yield: applications to mixed tropical forests. CAB International, Wallingford

    Google Scholar 

  • Villalobos RS (1995) Distribución de Quassia amara L. ex Blom en Costa Rica, y su relación com los contenidos de cuasina y neocuasina (insecticidas naturales) en sus tejidos. Master thesis. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Turrialba. Costa Rica. http://hdl.handle.net/11554/4806. Accessed 25 Aug 2019

  • Wong JLG, Thornber K, Baker N (2001) Resource assessment of non-wood forest products: experience and biometric principles, vol 1. Food and Agriculture Organization of the United Nations, Rome, p 109

    Google Scholar 

  • Zeide B (1993) Analysis of growth equations. For Sci 39(3):594–616. https://doi.org/10.1093/forestscience/39.3.594

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge researchers and officials of the old Project Conservation for Sustainable Development in Central America, of CATIE, which contributed to the establishment and measurement of research spaces on Quassia amara L., in particular: Dr. Daniel Marmillod, Rafael Ocampo, Lilibeth Leigue, Juan Carlos Barrantes, José Masís, Francisco Ling. Authors acknowledge Inês Balsa for her contribution on the design of the graphical abstract. This work was supported by SuFORun Marie Skodowska-Curie Research and Innovation Staff Exchange project (H2020-MSCA-RISE-2015) and contract SFRH/BPD/96475/2013 established with Fundação para a Ciência e Tecnologia (Portugal). Centro de Estudos Florestais is a research unit supported by Fundação para a Ciência e Tecnologia (Portugal) under contract UID/AGR/00239/2019.

Author information

Authors and Affiliations

Authors

Contributions

JAP contributed to methodology establishment; data analysis; modelling; paper writing. RV contributed to data collection; data analysis; paper revision.

Corresponding author

Correspondence to Joana A. Paulo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulo, J.A., Villalobos, R. Quassia amara L. diameter and total height under different light conditions: implications for the management of agroecosystems. Agroforest Syst 94, 761–778 (2020). https://doi.org/10.1007/s10457-019-00446-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-019-00446-9

Keywords

Navigation