Skip to main content
Log in

Intake, digestibility, and nitrogen balance in hair sheep fed Pennisetum purpureum supplemented with tropical tree foliage

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effects of inclusion of tropical tree foliage on intake, digestibility, and nitrogen balance in sheep fed with a diet based on fresh chopped Pennisetum purpureum. Four male Pelibuey sheep were used, with an average live weight of 22 ± 1.5 kg, distributed in a (4 × 4) Latin square design. Treatments were P. purpureum (T1), P. purpureum + Brosimum alicastrum (T2), P. purpureum + Guazuma ulmifolia (T3), and P. purpureum + Piscidia piscipula (T4). Tree foliage was incorporated into the ration at a proportion rate of 300 g/kg of dry matter (DM). Intake, digestibility, and nitrogen balance were measured during 24 h periods for 7 days. DM intake, organic matter (OM), and crude protein (CP) intakes were not affected (P > 0.05) by including tree foliage (an average of 892.7, 784.2, and 88.9 g/day, respectively). OM and CP digestibility was similar among treatments (P > 0.05). Nevertheless, digestibility of DM and NDF was lower (P < 0.05) in T2 and T4 than in T1 (DM = 570, 560, and 662.5 g/kg; NDF = 687.0, 650.9, and 772.1 g/kg, respectively). We conclude that providing 30% of the ration in DM of foliage of B. alicastrum, G. ulmifolia, and P. piscipula improves CP intake and reduces NDF intake, thereby improving digestibility of OM, CP in sheep, which indicates that the foliage of these tree species may be used as a protein supplement during the dry season in tropical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albores-Moreno S, Alayón-Gamboa JA, Miranda-Romero LA, Alarcón-Zúñiga B, Jiménez-Ferrer G, Ku-Vera JC, Piñeiro-Vázquez AT (2018) Effect of tree foliage supplementation of tropical grass diet on in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production in ruminants. Trop Anim Health Prod. https://doi.org/10.1007/s11250-018-1772-7

    Article  PubMed  Google Scholar 

  • AOAC (1980) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Washington, p 70

    Google Scholar 

  • Archimède H, Eugène M, Marie-Magdeleine C, Boval M, Martin C, Morgavi DP, Lecomte P, Doreau M (2011) Comparison of methane production between C3 and C4 grasses and legumes. Anim Feed Sci Technol 166–167:59–64

    Article  Google Scholar 

  • Archimède H, Rira M, Barde DJ, Labirin F, Marie-Magdeleine C, Calif B, Periacarpin F, Rochette Y, Morgavi DP, Doreau M (2015) Potential of tannin-rich plants, Leucaena leucocephala, Glyricidia sepium and Manihot esculenta, to reduce enteric methane emissions in sheep. J Anim Physiol Anim Nutr 100(6):1149–1158. https://doi.org/10.1111/jpn.12423

    Article  CAS  Google Scholar 

  • Barros-Rodríguez M, Solorio-Sánchez J, Ku-Vera J, Ayala-Burgos A, Sandoval-Castro C, Solís-Pérez G (2012) Productive performance and urinary excretion of mimosine metabolites by hair sheep grazing in a silvopastoral system with high densities of Leucaena leucocephala. Trop Anim Health Prod 44(8):1873–1878. https://doi.org/10.1007/s11250-012-0150

    Article  PubMed  Google Scholar 

  • Bhatta R, Enishi O, Yabumoto Y, Nonaka I, Takusari N, Higuchi K, Tajima K, Takenaka A, Kurihara M (2013) Methane reduction and energy partitioning in goats fed two concentrations of tannin from Mimosa spp. J Agric Sci 151:119–128

    Article  CAS  Google Scholar 

  • Bouazza L, Boufennara S, Bensaada M, Zeraib A, Rahal K, Saro C, Ranilla MJ, López S (2019) In vitro screening of Algerian steppe browse plants for digestibility, rumen fermentation profile and methane mitigation. Agrofor Syst. https://doi.org/10.1007/s10457-019-00408-1

    Article  Google Scholar 

  • Cochran WG, Cox GM (1991) Diseños experimentales, 2nd edn. Trillas, Mexico, p 661

    Google Scholar 

  • Delgado DC, Galindo J, Ibett JCO, Dominguez M, Dorta N (2013) Suplementación con follaje de L. leucocephala. Su efecto en la digestibilidad aparente de nutrientes y producción de metano en ovinos. Rev Cub Cien Agri 47:267–271

    Google Scholar 

  • Enríquez-Quiroz JF, Meléndez-Nava NF, Bolaños-Aguilar ED, Esqueda-Esquivel VA (2011) Producción y Manejo de Forrajes Tropicales. Instituto Nacional de Investigaciones Agropecuarias y Forestales (INIFAP), Mexico City, p 405

    Google Scholar 

  • García E (1981) Modificaciones al sistema de clasificación climática de Kopen para adaptarlo a las condiciones de la República Mexicana. Instituto de Geografia, UNAM, Mexico

    Google Scholar 

  • Hristov AN, Hanigan M, Cole A, Todd R, McAllister TA, Ndegwa PM, Rotz A (2011) Review: ammonia emissions from dairy farms and beef feedlots. Can J Anim Sci 91:1–35

    Article  CAS  Google Scholar 

  • Jayanegara A, Leiber F, Kreuzer M (2012) Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J Anim Physiol Anim Nutr 96:365–375

    Article  CAS  Google Scholar 

  • Kaitho RJ, Umunna NM, Nsahlai IV, Tamminga S, vanBruchen J (1998) Utilization of browse supplements with varying tannin levels by Ethiopian Menz sheep. 2. Nitrogen metabolism. Agrofor Syst 39:161–173

    Article  Google Scholar 

  • Kongmanila D, Ledin I (2009) Chemical composition of some tropical foliage species and their intake and digestibility by goats. Asian Aust J Anim Sci 22(6):803–811

    Article  CAS  Google Scholar 

  • Ku-Vera JC, Ayala BAJ, Solorio SFJ, Briceño PEG, Ruiz GA, Piñeiro VAT, Barros RM, Soto AA, Espinoza HJC, Albores MS, Chay CAJ, Aguilar PCF, Ramírez AL (2013) Tropical tree foliages and shrubs as feed additives in ruminant rations. In: Fattah A, Salem ZM (eds) Nutritional strategies of animal feed additives. Nova Science Publishers, New York, pp 59–76

    Google Scholar 

  • Makkar HPS (2003) Quantification of tannins in tree and shrub foliage: a laboratory analysis. Kluwer Academic Publisher, Dordrecht

    Book  Google Scholar 

  • McSweeney CS, Palmer B, McNeill DM, Krause DO (2001) Microbial interaction with tannins: nutritional consequences for ruminants. Anim Feed Sci Technol 91:83–93

    Article  CAS  Google Scholar 

  • Melesse A, Steingass H, Schollenberger M, Holstein J, Rodehutscord M (2017) Nutrient compositions and in vitro methane production profiles of leaves and whole pods of twelve tropical multipurpose tree species cultivated in Ethiopia. Agrofor Syst. https://doi.org/10.1007/s10457-017-0110-9

    Article  Google Scholar 

  • Mengesha M, Bezabih M, Mekonnen K, Adie A, Duncan AJ, Thorne P, Tolera A (2017) Tagasaste (Chamaecytisus palmensis) leaf supplementation to enhance nutrient intake and production performance of sheep in the Ethiopian highlands. Trop Anim Health Prod 49:1415–1422. https://doi.org/10.1007/s11250-017-1342-4

    Article  CAS  PubMed  Google Scholar 

  • Min BR, Solaiman S (2018) Comparative aspects of plant tannins on digestive physiology, nutrition and microbial community changes in sheep and goats: a review. J Anim Physiol Anim Nutr 102(05):1–13. https://doi.org/10.1111/jpn.12938

    Article  Google Scholar 

  • Min BR, Solaiman S, Shange R, Eun JS (2014) Gastrointestinal bacterial and methanogenic archaea diversity dynamics associated with condensed tannin-containing pine bark diet in goats using 16S Rdna amplicon pyrosequencing. Int J Microbiol. https://doi.org/10.1155/2014/141909

    Article  PubMed  PubMed Central  Google Scholar 

  • Min BR, Solaiman S, Terrill T, Ramsay A, Mueller-Harvey I (2015) The effects of tannins-containing ground pine bark diet upon nutrient digestion, nitrogen balance, and mineral retention in meat goats. J Anim Sci Biotech 6:25. https://doi.org/10.1186/s40104-015-0020-5

    Article  CAS  Google Scholar 

  • Monforte-Briceño G, Sandoval-Castro C, Ramírez-Avilíes L, Capetillo-Leal M (2005) Defaunating capacity of tropical fodder trees: effects of polyethylene glycol and its relationship to in vitro gas production. Anim Feed Sci Technol 123(124):313–327

    Article  Google Scholar 

  • Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86:2010–2037

    Article  CAS  Google Scholar 

  • Naumann HD, Tedeschi LO, Zeller WE, Huntley Nichole F H (2017) The role of condensed tannins in ruminant animal production: advances, limitations and future directions. R Bras Zootec 46(12):929–949

    Article  Google Scholar 

  • Patra AK (2017) Accounting methane and nitrous oxide emissions, and carbon footprints of livestock food products in different states of India. J Clean Prod 162:678–686

    Article  CAS  Google Scholar 

  • Patra AK, Saxena J (2011) Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J Sci Food Agric 91:24–37

    Article  CAS  PubMed  Google Scholar 

  • Piñeiro-Vázquez AT, Ayala-Burgos AJ, Chay-Canul AJ, Ku-Vera JC (2013) Dry matter intake and digestibility of rations replacing concentrates with graded levels of Enterolobium cyclocarpum in Pelibuey lambs. Trop Anim Health Prod 45:577–583

    Article  PubMed  Google Scholar 

  • Piñeiro-Vázquez AT, Canul-Solis JR, Alayón-Gamboa JA, Chay-Canul AJ, Ayala-Burgos AJ, Aguilar-Pérez CA, Solorio-Sánchez FJ, Ku-Vera JC (2015) Potential of condensed tannins for the reduction of emissions of enteric methane and their effect on ruminant productivity. Arch Med Vet 47:263–272

    Article  Google Scholar 

  • Piñeiro-Vázquez AT, Canul-Solis JR, Alayon-Gamboa JA, Chay-Canul AJ, Ayala-Burgos AJ, Solorio-Sanchez FJ, Aguilar-Perez CF, Ku-Vera JC (2017a) Energy utilization, nitrogen balance and microbial protein supply in cattle fed Pennisetum purpureum and condensed tannins. J Anim Physiol Anim Nutr 101:159–169

    Article  Google Scholar 

  • Piñeiro-Vázquez AT, Canul-Solis JR, Casanova-Lugo F, Chay-Canul AJ, Ayala-Burgos A, Solorio-Sánchez FJ (2017b) Emisión de metano en ovinos alimentados con Pennisetum purpureum y árboles que contienen taninos condensados. Rev Mex Cienc Pecu 8:111–119

    Article  Google Scholar 

  • Piñeiro-Vázquez AT, Jiménez-Ferrer GO, Chay-Canul AJ, Casanova-Lugo F, Díaz-Echeverría V, Ayala-Burgos AJ, Solorio-Sánchez FJ, Aguilar-Pérez CF, Ku-Vera JC (2017c) Intake, digestibility, nitrogen balance and energy utilization in heifers fed low-quality forage and Leucaena leucocephala. Anim Feed Sci Technol 228:194–201

    Article  Google Scholar 

  • Poppi DP, McLennan SR (1995) Protein and energy utilization by ruminants at pasture. J Anim Sci 73:278–290. https://doi.org/10.2527/1995.731278x

    Article  CAS  PubMed  Google Scholar 

  • Priolo A, Waghorn GC, Lanza M, Biondi L, Pennisi P (2000) Polyethylene glycol as a means for reducing the impact of condensed tannins in carob pulp: effects on lamb growth performance and meat quality. J Anim Sci 78:810–816

    Article  CAS  PubMed  Google Scholar 

  • Raghuvansi SKS, Prasad R, Mishra AS, Chaturvedi OH, Tripathi MK, Misra AK, Saraswat BL, Jakhmola RC (2007) Effect of inclusion of tree leaves in feed on nutrient utilization and rumen fermentation in sheep. Bioresour Technol 98:511–517

    Article  CAS  PubMed  Google Scholar 

  • Reed JD (1995) Nutritional toxicology of tannins and related polyphenols in forage legumes. J Anim Sci 73:1516–1528

    Article  CAS  PubMed  Google Scholar 

  • Rira M, Morgavi DP, Genestoux L, Djibiri S, Sekhri I, Doreau M (2019) Methanogenic potential of tropical feeds rich in hydrolysable tannins. J Anim Sci 97:2700–2710. https://doi.org/10.1093/jas/skz199

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Gonzáles A (2013) Balance de nitrógeno y composición de la leche de vacas alimentadas con Leucaena leucocephala. Master´s thesis. Universidad Autónoma de Yucatán. Merida, Yucatan, Mexico. 2013. p 57

  • Sánchez NR, Ledin I (2006) Effect of feeding different levels of foliage from Cratylia argentea to creole dairy cows on intake, digestibility, milk production and milk composition. Trop Animal Health Prod 38(4):343–351. https://doi.org/10.1007/s11250-006-4314-7

    Article  Google Scholar 

  • SAS. Institute Inc., SAS, STAT (2006) Software, Ver. 9.00. SAS, Cary

    Google Scholar 

  • Schneider BH, Flatt WP (1975) The evaluation of feeds through digestibility experiments. The University of Georgia Press, Athens, p 423

    Google Scholar 

  • Soltan YA, Morsy AS, Sallam SMA, Louvandini H, Abdalla AL (2012) Comparative in vitro evaluation of forage legumes (prosopis, acacia, atriplex, and leucaena) on ruminal fermentation and methanogenesis. J Anim Feed Sci 21:759–772

    Article  Google Scholar 

  • Soltan YA, Morsy AS, Sallam SM, Lucas RC, Louvandini H, Kreuzer M, Abdalla AL (2013) Contribution of condensed tannins and mimosine to the methane mitigation caused by feeding Leucaena leucocephala. Arch Anim Nutr 67:169–184. https://doi.org/10.1080/1745039X.2013.801139

    Article  CAS  PubMed  Google Scholar 

  • Tan HY, Sieo CC, Abdullah N, Liang JB, Huang XD, Ho YW (2011) Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim Feed Sci Technol 169:185–193. https://doi.org/10.1016/j.anifeedsci.2011.07.004

    Article  CAS  Google Scholar 

  • Tiemann TT, Lascano CE, Wettstein HR, Mayer AC, Kreuzer M, Hess HD (2008) Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2:790–799

    Article  CAS  PubMed  Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583

    Article  PubMed  Google Scholar 

  • Ventura-Cordero J, González-Pech PG, Torres-Acosta JFJ, Sandoval-Castro CA, Tun-Garrido J (2017) Sheep and goat browsing a tropical deciduous forest during the rainy season: why does similar plant species consumption result in different nutrient intake? Anim Prod Sci 59: 66–72. https://doi.org/10.1071/AN16512

    Article  Google Scholar 

  • Wahyuni S, Yulianti ES, Komara W, Yates NG, Obst JM, Lowry JB (1982) The performance of Ongole cattle offered either grass, sundried Leucaena leucocephala or varying proportions of each. Trop Anim Health Prod 7:275–283

    Google Scholar 

  • Yañez-Ruiz DR, Hart KJ, Martin-Garcia IA, Ramos S, Newbold CJ (2008) Diet composition at weaning affects the rumen microbial population and methane emissions by lambs. Aust J Exp Agric 48:186–188

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Technological Institute of Mexico for Financing the Project 6544.18-P, titled “Effect of intake of tropical trees on digestibility, pattern of ruminal fermentation, protozoan population, and production of enteric methane in hair sheep.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Piñeiro-Vázquez.

Ethics declarations

Conflict of interest

We certify that none of the authors have any conflict of interest with any funding organization regarding the material discussed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Villanueva, H., Puch-Rodríguez, J., Muñoz-González, J. et al. Intake, digestibility, and nitrogen balance in hair sheep fed Pennisetum purpureum supplemented with tropical tree foliage. Agroforest Syst 94, 665–674 (2020). https://doi.org/10.1007/s10457-019-00439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-019-00439-8

Keywords

Navigation