Nutrient cycling from leaf litter in multistrata successional agroforestry systems and natural regeneration at Brazilian Atlantic Rainforest Biome

  • Luís Cláudio Maranhão FroufeEmail author
  • Daniel Kramer Schwiderke
  • Amanda Costa Castilhano
  • Raul Matias Cezar
  • Walter Steenbock
  • Carlos Eduardo Sícoli Seoane
  • Itamar Antônio Bognola
  • Fabiane Machado Vezzani


The conversion of forests to agricultural crops impacts these ecosystems, causing negative changes in the biological, physical and chemical soil attributes. Agroforestry systems (AFs) represent an environmental sustainable alternative that can bind healthy food production and nature conservation. Litter production and decomposition are key roles to carbon and nutrient cycles in the tropics, as the main sources of nutrients for plant growing. The aim of this study was to quantify the amount of leaf litter accumulated aboveground and its contribution to nutrient return through decomposition process in 5- and 10-year multistrata successional agroforestry systems (AF5 and AF10) as compared to 10-year natural regeneration areas (NR10) at Brazilian Atlantic Rainforest Biome. Greater amounts of standing litter were observed on AF5 (61 Mg ha−1) as compared to AF10 (45 Mg ha−1) and NR10 (39 Mg ha−1), with leaf contribution of 17% (AF5), 25% (NR10) and 30% (AF10). Leaf decomposition was performed using litterbags, and all curves were fitted to a double exponential model for remaining mass, C and Mg and to a single exponential model for N, P, K and Ca. The half-time life of decomposing leaves varied from 173 days (NR10) to 289 (AF5) and 301 days (AF10), and the half-time mineralization of nutrients varied from 15 (N on AF5) to 257 days (K on AF10). Despite their low contribution on total standing litter, leaf fraction is able to return at least 100 kg ha−1 N, 5 kg ha−1 P and 10 kg ha−1 K to soil of multistrata agroforestry systems, reducing NPK external inputs dependence to small farmers.


Agrofloresta Decay rates Leaf decomposition Litterbag Litterfall 



The authors would like to thank to: Projeto Agroflorestar (Programa Petrobrás Ambiental); Projeto Agroflorestas (Embrapa); and all small multistrata agroforestry farmers: Nardo, Dolíria, Sezefredo and Sidnei (all of them associated to Cooperafloresta).


  1. Aerts R, Caluwe H, Beltman B (2003) Plant community mediated vs. nutritional controls on litter decomposition rates in grasslands. Ecology 84(12):3198–3208CrossRefGoogle Scholar
  2. Albrecht A, Kandjhi ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27. CrossRefGoogle Scholar
  3. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen´s climate classification map for Brazil. Meteorol Z. Google Scholar
  4. Angel-Pérez ALD, Martín Alfonso MB (2004) Totonac homegardens and natural resources in Veracruz, Mexico. Agric Hum Values 21:329–346CrossRefGoogle Scholar
  5. Béliveau A, Lucotte M, Davidson R, Paquet S, Mertens F, Passos CJ, Romana CA (2017) Reduction of soil erosion and mercury losses in agroforestry systems compared to forests and cultivated fields in the Brazilian Amazon. J Environ Manag 203:522–532. CrossRefGoogle Scholar
  6. Bocock KL, Gilbert OJW (1957) The disappearance of leaf litter under different woodland conditions. Plant Soil 9:179–185CrossRefGoogle Scholar
  7. Caja-Giron YS, Sinclair FL (2001) Characterization of multistrata silvopastoral systems on seasonally dry pastures in the Caribbean Region of Colombia. Agrofor Syst 53:215–225CrossRefGoogle Scholar
  8. Cezar RM, Vezzani FM, Schwiderke DK, Gaiad S, Brown GG, Seoane CES, Froufe LCM (2015) Soil biological properties in multistrata successional agroforestry systems and in natural regeneration. Agrofor Syst 89:1035–1047. CrossRefGoogle Scholar
  9. Chen C, Liu W, Jiang X, Wu J (2017) Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: implication for land use. Geoderma 299:13–24. CrossRefGoogle Scholar
  10. Das T, Das AK (2010) Litter production and decomposition in the forested areas of traditional homegardens: a case study from Barak Valley, Assam, northeast India. Agrofor Syst 79:157–170CrossRefGoogle Scholar
  11. Froufe LCM, Seoane CES (2011) Levantamento fitossociológico comparativo entre sistema agroflorestal multiestrato e capoeiras como ferramenta para a execução da reserva legal. Pesquisa Florestal Brasileira, Colombo 31(67):203–225. CrossRefGoogle Scholar
  12. Froufe LCM, Rachwal MFG, Seone CES (2011) Potencial de sistemas agroflorestais multiestrata para sequestro de carbono em áreas de ocorrência Floresta Atlântica. Pesquisa Florestal Brasileira 66:143–154CrossRefGoogle Scholar
  13. Götsch E (1995) Break-thropugh in agriculture. AS-PTA, Rio de Janeiro, p 22pGoogle Scholar
  14. Hättenschwiler S, Gasser P (2005) Soil animals alter plant diversity effects on decomposition. PNAS 102(5):1519–1524. CrossRefGoogle Scholar
  15. Heal OW, Anderson JM, Swift MJ (1997) Plant litter quality and decomposition: an historical review. In: Cadisch G, Giller KE (eds) Driven by nature—plant litter quality and decomposition. CAB International, Oxfordshire, pp 3–30Google Scholar
  16. Isaac RS, Nair MA (2006) Litter dynamics of six multipurpose trees in a homegarden in Southern Kerala, India. Agrofor Syst 67:203–213CrossRefGoogle Scholar
  17. Isaac ME, Timmer VR, Quashie-Sam SJ (2007) Shade tree effects in an 8-year-old cocoa agroforestry system: biomass and nutrient diagnosis of Theobroma cacao by vector analysis. Nutr Cycl Agroecosyst 78:155–165CrossRefGoogle Scholar
  18. Jacob M, Weland N, Platner C, Schaefer M (2009) Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity. Soil Biol Biochem 41:2122–2130CrossRefGoogle Scholar
  19. Kumar BM (2011) Species richness and aboveground carbon stocks in the homegardens of central Kerala, India. Agric Ecosyst Environ 140:430–440CrossRefGoogle Scholar
  20. Kurzatkowski D, Martius C, Höfer H, Förster MGB, Beck L, Vlek P (2004) Litter decomposition, microbial biomass and activity of soil organisms in three agroforestry sites in central Amazonia. Nutr Cycl Agroecosyst 69:257–267CrossRefGoogle Scholar
  21. Lavelle P, Blanchart E, Martin A, Martin S, Spain A, Toutain F, Barois I, Schaefer R (1993) A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25:130–150CrossRefGoogle Scholar
  22. Lehmann J, Günther D, Socorro da mota M, Pereira de Almeida M, Zech W, Kaiser K (2001) Inorganic and organic soil phosphorus and sulfur pools in an Amazonian multistrata agroforestry system. Agrofor Syst 53(113–124):2001Google Scholar
  23. Li S, Tong Y, Wang Z (2017) Species and genetic diversity affect leaf litter decomposition in subtropical broadleaved forest in southern China. J Plant Ecol 10(1):232–241. CrossRefGoogle Scholar
  24. Lisanework N, Michelsen A (1994) Litterfall and nutrient release by decomposition in three plantations compared with natural forest in the Ethiopian highland. For Eol Manag 65:149–164Google Scholar
  25. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157. CrossRefGoogle Scholar
  26. Minderman G (1968) Addition, decomposition, and accumulation of organic matter in forests. J Ecol 56:355–362CrossRefGoogle Scholar
  27. Myers RJK, van Noordwijk M, Vityakon P (1997) Synchrony of nutrient release and plant demand: plant litter quality, soil environment and farmer management options. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, London, pp 215–229Google Scholar
  28. Odum EP (1969) The strategy of ecosystem development. Science 164:262–270CrossRefGoogle Scholar
  29. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331CrossRefGoogle Scholar
  30. Pardon P, Reubens B, Reheul D, Mertens J, de Frenne P, Coussement T, Janssens P, Verheyen K (2017) Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agric Ecosyst Environ 247:98–111. CrossRefGoogle Scholar
  31. Polyakova O, Billor N (2007) Impact decomposition rates and nutrient circulation of deciduous tree species on litterfall quality in pine stands. For Ecol Manag 253:11–18CrossRefGoogle Scholar
  32. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. CrossRefGoogle Scholar
  33. Richards BN, Charley JL (1984) Mineral cycling processes and system stability in the eucalypt forest. For Ecol Manag 7:31–47CrossRefGoogle Scholar
  34. Santonja M, Rancon A, Fromin N, Baldy V, Hättenschwiler S, Fernandez C, Montès N, Mirleau P (2017) Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland. Soil Biol Biochem 111:124–134. CrossRefGoogle Scholar
  35. Sariyildiz T, Anderson JM (2005) Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types. For Ecol Manag 210:303–319CrossRefGoogle Scholar
  36. Sayer EJ, Tanner EVJ (2010) Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. J Ecol 98:1052–1062CrossRefGoogle Scholar
  37. Shanin V, Valkonen S, Grabarnik P, Mäkipää R (2016) Using forest ecosystem simulation model EFIMOD in planning uneven-aged forest management. For Ecol Manag 378:193–205. CrossRefGoogle Scholar
  38. SPSS (1991) SPSS statistical algorithms, 2ª edn. SPSS Inc., ChicagoGoogle Scholar
  39. Staver C, Guharay F, Monterosso D, Muschler RG (2001) Designing pest-suppressive multiestrata perennial crop systems: shade-grown coffee in Central America. Agrofor Syst 53:151–170CrossRefGoogle Scholar
  40. Steenbock W, Vezzani FM (2013) Agrofloresta: aprendendo a produzir com a natureza. 1ª ed. Curitiba. ISBN 978-85-908740-1-0Google Scholar
  41. Steenbock W, Silva RO, Froufe LCM, Seoane CE (2013) Agroflorestas e sistemas agroflorestais no espaço e no tempo. In: Steenbock W, Silva LC, Silva RO, Rodrigues AS, Perez-Cassarino J, Fonini R (eds) Agrofloresta, ecologia e sociedade. Kairós, Curitiba, pp 39–60Google Scholar
  42. Suyanto S, Permana RP, Khususiyah N, Joshi L (2005) Land tenure, agroforestry adoption, and reduction of fire hazard in a forest zone: a case study from Lampung, Sumatra, Indonesia. Agrofor Syst 65:1–11CrossRefGoogle Scholar
  43. Tabarelli M, Lopes AV, Peres CA (2008) Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40(6):657–661CrossRefGoogle Scholar
  44. Teklay T, Nordgren A, Nyberg G, Malmer A (2007) Carbon mineralization of leaves from four Ethiopian agroforestry species under laboratory and field conditions. Appl Soil Ecol 35:193–202CrossRefGoogle Scholar
  45. Utomo B, Prawoto AA, Bonnet S, Bangviwat A, Gheewala SH (2016) Environmental performance of cocoa production from monoculture and agroforestry systems in Indonesia. J Clean Prod 134:583–591. CrossRefGoogle Scholar
  46. Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572CrossRefGoogle Scholar
  47. Vitousek PM, Turner DR, Parton WJ, Sanford RL (1994) Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanisms, and models. Ecology 75:418–429CrossRefGoogle Scholar
  48. Wieder RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63(6):1636–1642CrossRefGoogle Scholar
  49. Wieder RK, Carrel JE, Rapp JK, Kucera CL (1983) Decomposition of tall fescue (Festuca elatior var. arundinacea) and cellulose litter on surface mines and a tallgrass prairie in Central Missouri, USA. J Appl Ecol 20:303–321CrossRefGoogle Scholar
  50. Yadav RS, Yadav BL, Chhipa BR (2008) Litter dynamics and soil properties under different tree species in a semi-arid region of Rajasthan, India. Agrofor Syst 73:1–12CrossRefGoogle Scholar
  51. Yang X, Chen J (2009) Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biol Biochem 41:910–918CrossRefGoogle Scholar
  52. Young A (1997) Agroforestry for soil management, 2nd. edn. CAB International. ISBN 0-85199-189-0Google Scholar
  53. Zeng D, Mao R, Chang CSX, Li J, Yang D (2010) Carbon mineralization of tree leaf litter and crop residues from poplar-based agroforestry systems in Northeast China: a laboratory study. Appl Soil Ecol 44:133–137CrossRefGoogle Scholar
  54. Zhang P, Tian X, He X, Song F, Ren L, Jiang P (2008) Effect of litter quality on its decomposition in broadleaf and coniferous forest. Eur J Biol 44:392–399Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Luís Cláudio Maranhão Froufe
    • 1
    Email author
  • Daniel Kramer Schwiderke
    • 2
  • Amanda Costa Castilhano
    • 3
  • Raul Matias Cezar
    • 2
  • Walter Steenbock
    • 4
  • Carlos Eduardo Sícoli Seoane
    • 1
  • Itamar Antônio Bognola
    • 1
  • Fabiane Machado Vezzani
    • 2
  1. 1.Brazilian Agricultural Research Corporation - National Research Center of ForestryColomboBrazil
  2. 2.Soil Science Postgraduate Programme of Federal University of Paraná (UFPR)CuritibaBrazil
  3. 3.Pontifical Catholic University of Paraná - PUCCuritibaBrazil
  4. 4.Chico Mendes Biodiversity Institute - ICMBioBrasíliaBrazil

Personalised recommendations