Predicting the potential impact of climate change on the declining agroforestry species Borassus aethiopum Mart. in Benin: a mixture of geostatistical and SDM approach

Abstract

Predicted effects of climate change (CC) on plant species distribution have raised concerns on their conservation and domestication. Appropriate stand density may enhance species ability to adapt to CC. Therefore, combining species distribution modeling (SDM) and spatial pattern of density should provide insightful information for setting conservation actions. We combined geostatistical and SDM techniques to assess (1) current tree density spatial pattern and its relationship with bioclimatic zone (humid, sub-humid, and semi-arid), land-use type (protected areas vs. agrosystems), and soil type (eight types), and (2) present-day and future distributions of suitable habitats under low-RCP4.5 and high-RCP8.5 emissions scenarios for Borassus aethiopum, a declining agroforestry palm in Benin. Data were obtained from 2880 one-ha plots. Semivariogram and kriging were used to model spatial patterns of density while Maximum Entropy was used for SDM. Tree density followed an isotropic spatial model with a range of 2.15 km, indicating extremely fragmented density pattern. Tree density was 8-times higher in protected areas (PAs, 68.6 ± 5.09 trees ha−1) than in agrosystems (8.4 ± 0.31 trees ha−1) and greater on ferruginous soils. Though 80% of the country was currently highly suitable with similar trend for PAs and agrosystems, future predictions showed major habitat loss (20–61%), particularly under RCP8.5. While changes were similar between PAs and agrosystems, the decrease in habitat suitability was pronounced in the semi-arid zone where the species is currently widely-distributed with higher abundance. Very weak link was found between present-day abundance and present-day and future distribution. It is concluded that B. aethiopum has a fragmented density pattern and will be sensitive to CC. In-situ and circa-situ conservations or orchards establishment were suggested depending on the projected changes and the bioclimatic zone. The approach used here is exemplary for other agroforestry tree species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adomou AC (2005) Vegetation patterns and environmental gradients in Benin Implications for biogeography and conservation PhD diss. Wageningen University, Wageningen

    Google Scholar 

  2. Adomou A, Agbani O, Sinsin B (2011) Plantes. Plants Protection de la nature en Afrique de l’Ouest: Une liste rouge pour le Bénin Nature Conservation in West Africa: Red List for Benin, International Institute of Tropical Agriculture, Ibadan, Nigeria:365

  3. Akoègninou A, Van der Burg W, Van der Maesen L (2006) Flore analytique du Bénin, vol 06.2. Backhuys Publishers, Leiden

    Google Scholar 

  4. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  5. Assogbadjo AE, Glèlè Kakaï RL, Vodouhê F, Djagoun CAMS, Codjia JTC, Sinsin B (2012) Biodiversity and socioeconomic factors supporting farmers’ choice of wild edible trees in the agroforestry systems of Benin (West Africa). For Policy Econ 14:41–49

    Article  Google Scholar 

  6. Baillargeon S (2005) Le krigeage: revue de la théorie et application à l’interpolation spatiale de données de précipitations. Université Laval, Laval

    Google Scholar 

  7. Barot S, Gignoux J, Vuattoux R, Legendre S (2000) Demography of a savanna palm tree in Ivory Coast (Lamto): population persistence and life-history. J Trop Ecol 16:637–655

    Article  Google Scholar 

  8. Barve N et al (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Modell 222:1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011

    Article  Google Scholar 

  9. Bayton RP (2007) A revision of Borassus L. (Arecaceae). Kew Bull 62:561–585

    Google Scholar 

  10. Blach-Overgaard A, Svenning J-C, Dransfield J, Greve M, Balslev H (2010) Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33:380–391

    Google Scholar 

  11. Blach-Overgaard A, Balslev H, Dransfield J, Normand S, Svenning J-C (2015) Global-change vulnerability of a key plant resource, the African palms Scientific Reports 5

  12. Bourou S, Bowe C, Diouf M, Van Damme P (2012) Ecological and human impacts on stand density and distribution of tamarind (Tamarindus indica L.) in Senegal. Afr J Ecol 50:253–265

    Google Scholar 

  13. Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5:694–700

    Article  Google Scholar 

  14. Cabannes Y, Chantry G (1987) Le rônier et le palmier à sucre dans l’habitat Edition GRET (France) 90

  15. Christakos G, Bogaert P, Serre M (2002) Temporal GIS, with CD-ROM. Springer, New York

    Google Scholar 

  16. Dawson IK, Lengkeek A, Weber JC, Jamnadass R (2009) Managing genetic variation in tropical trees: linking knowledge with action in agroforestry ecosystems for improved conservation and enhanced livelihoods. Biodivers Conserv 18:969–986. https://doi.org/10.1007/s10531-008-9516-z

    Article  Google Scholar 

  17. Djossa BA, Fahr J, Wiegand T, Ayihouénou B, Kalko E, Sinsin B (2008) Land use impact on Vitellaria paradoxa CF Gaerten. stand structure and distribution patterns: a comparison of Biosphere Reserve of Pendjari in Atacora district in Benin. Agrofor Syst 72:205–220

    Article  Google Scholar 

  18. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  19. Fandohan B, Assogbadjo AE, Glele Kakaï RL, Sinsin B, Van Damme P (2010) Impact of habitat type on the conservation status of tamarind (Tamarindus indica L.) populations in the W National Park of Benin. Fruits 65:11–19

    Article  Google Scholar 

  20. Fandohan B, Gouwakinnou GN, Fonton NH, Sinsin B, Liu J (2013) Impact des changements climatiques sur la répartition géographique des aires favorables à la culture et à la conservation des fruitiers sous-utilisés: cas du tamarinier au Bénin. Biotechnol Agron Soc Environ 17:450–462

    Google Scholar 

  21. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  22. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, Oxford

    Google Scholar 

  23. Gouwakinnou GN, Kindomihou V, Assogbadjo AE, Sinsin B (2009) Population structure and abundance of Sclerocarya birrea (A. Rich) Hochst subsp. birrea in two contrasting land-use systems in Benin. Int J Biodivers Conserv 1:194–201

    Google Scholar 

  24. Haarmeyer DH, Schumann K, Bernhardt-Römermann M, Wittig R, Thiombiano A, Hahn K (2013) Human impact on population structure and fruit production of the socio-economically important tree Lannea microcarpa in Burkina Faso. Agrofor Syst 87:1363–1375

    Article  Google Scholar 

  25. Harris RMB, Grose MR, Lee G, Bindoff NL, Porfirio LL, Fox-Hughes P (2014) Climate projections for ecologists. Wiley Interdiscip Rev Clim Change 5:621–637

    Article  Google Scholar 

  26. Hijmans R, Cameron S, Parra J, Jones P, Jarvis A (2004) The WorldClim interpolated global terrestrial climate surfaces. Version 1.3

  27. Idohou R, Assogbadjo AE, Kakaï RG, Peterson AT (2016) Spatio-temporal dynamic of suitable areas for species conservation in West Africa: eight economically important wild palms under present and future climates. Agrofor Syst. https://doi.org/10.1007/s10457-016-9955-6

    Article  Google Scholar 

  28. INSAE (2013) Résultats provisoires du RGPH4. Cotonou, Benin

    Google Scholar 

  29. Jahnke HE, Jahnke HE (1982) Livestock production systems and livestock development in tropical Africa vol 35. Kieler Wissenschaftsverlag Vauk Kiel

  30. Jiménez-Valverde A (2011) Opinion: relationship between local population density and environmental suitability estimated from occurrence data. Front Biogeogr 3:59–61

    Google Scholar 

  31. Judex M, Röhrig J, Schulz O, Thamm H (2009) IMPETUS Atlas du Bénin. Résultats de recherche 2000–2007 Département de Géographie, Université de Boon, Boon

  32. Keshavarzi A, Sarmadian F, Odagiu A (2013) Predictive modeling of soil and plant distributions. ProEnvironment/ProMediu 6:17–25

    Google Scholar 

  33. Leakey RR et al (2004) Evidence that subsistence farmers have domesticated indigenous fruits (Dacryodes edulis and Irvingia gabonensis) in Cameroon and Nigeria. Agrofor Syst 60:101–111

    Article  Google Scholar 

  34. Leakey RR et al (2012) Tree domestication in agroforestry: progress in the second decade (2003–2012). In: Nair PKR, Garrity D (eds) Agroforestry-the future of global land use. Springer, New York, pp 145–173

    Google Scholar 

  35. Liedtke Tesar ML (2011) A comparison of spatial prediction techniques using both hard and soft data. University of Nebraska-Lincoln, Lincoln

    Google Scholar 

  36. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  37. Liu D et al (2006) Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China. Agric Ecosyst Environ 113:73–81. https://doi.org/10.1016/j.agee.2005.09.006

    Article  CAS  Google Scholar 

  38. Luo Z, Sun OJ, Xu H (2010) A comparison of species composition and stand structure between planted and natural mangrove forests in Shenzhen Bay, South China. J Plant Ecol 3:165–174. https://doi.org/10.1093/jpe/rtq004

    Article  Google Scholar 

  39. McKee J, Chambers E, Guseman J (2013) Human population density and growth validated as extinction threats to mammal and bird species. Hum Ecol 41:773–778. https://doi.org/10.1007/s10745-013-9586-8

    Article  Google Scholar 

  40. Miller AJ, Knouft JH (2006) GIS-based characterization of the geographic distributions of wild and cultivated populations of the Mesoamerican fruit tree Spondias purpurea (Anacardiaceae). Am J Bot 93:1757–1767

    Article  PubMed  Google Scholar 

  41. Mollet M, Herzog F, Behi Y, Farah Z (2000) Sustainable Exploitation of Borassus aethiopum, Elaeis guineensis and Raphia hookeri for the Extraction of Palm Wine in Côte d’Ivoire. Environ Dev Sustain 2:45–59

    Article  Google Scholar 

  42. N’Danikou S, Achigan-Dako EG, Tchokponhoue DA, Agossou CO, Houdegbe CA, Vodouhe RS, Ahanchede A (2015) Modelling socioeconomic determinants for cultivation and in-situ conservation of Vitex doniana Sweet (Black plum), a wild harvested economic plant in Benin. J Ethnobiol Ethnomed 11:1

    Article  Google Scholar 

  43. Nachtergaele F, van Velthuizen H, Verelst L, Wiberg D (2012) Harmonized World Soil Database, Version 1.2, FAO, IIASA, ISRIC, ISSCAS, JRC

  44. Nagelkerke NJ (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692

    Article  Google Scholar 

  45. Nair R (1991) State-of-the-art of agroforestry systems. For Ecol Manag 45:5–29

    Article  Google Scholar 

  46. Nair R, Nair VD, Kumar BM, Showalter JM (2010) Chapter five-carbon sequestration in agroforestry systems. Adv Agron 108:237–307. https://doi.org/10.1016/S0065-2113(10)08005-3

    Article  CAS  Google Scholar 

  47. Nielsen SE, Johnson CJ, Heard DC, Boyce MS (2005) Can models of presence-absence be used to scale abundance? two case studies considering extremes in life history. Ecography 28:197–208. https://doi.org/10.1111/j.0906-7590.2005.04002.x

    Article  Google Scholar 

  48. Nogués-Bravo D (2009) Predicting the past distribution of species climatic niches. Glob Ecol Biogeogr 18:521–531

    Article  Google Scholar 

  49. Nyadoi P et al (2009) Tamarinds (Tamarindus indica L.) niche tree species diversity characterisation reveals conservation needs and strategies. Int J Biodivers Conserv 1:151–176

    Google Scholar 

  50. Ouinsavi C, Gbémavo C, Sokpon N (2011) Ecological structure and fruit production of African fan palm (Borassus aethiopum) populations American. J Plant Sci 2:733–743

    Article  Google Scholar 

  51. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  52. Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  53. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  54. Platts PJ, Omeny PA, Marchant R (2015) AFRICLIM 3.0: high-resolution ensemble climate projections for Africa. Afr J Ecol. https://doi.org/10.6084/m9.figshare.1284624

    Article  Google Scholar 

  55. Queiroz TFd, Baughman C, Baughman O, Gara M, Williams N (2012) Species distribution modeling for conservation of rare, edaphic endemic plants in White River Valley, Nevada. Nat Areas J 32:149–158

    Article  Google Scholar 

  56. R Core Team (2015) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. R Foundation for Statistical Computing. ISBN 3-900051-07-0. http://www.R-project.org

  57. Robiansyah I, Hajar AS (2015) Predicting current and future distribution of endangered tree Dracaena ombet Kotschy and Peyr. Under climate change. In: Proceedings of the national academy of sciences, India section B: biological sciences pp 1–8

  58. Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Change 2:248–253. https://doi.org/10.1038/nclimate1385

    Article  Google Scholar 

  59. Rossi J et al (2009) Spatial structures of soil organic carbon in tropical forests—A case study of Southeastern Tanzania. CATENA 77:19–27

    Article  CAS  Google Scholar 

  60. Rossiter D (2007) Technical Note: Co-kriging with the gstat package of the R environment for statistical computing. Enschede (NL): International Institute for Geo-information Science & Earth Observation (ITC)

  61. Salako VK, Assogbadjo AE, Adomou AC, Agbangla C, Glèlè Kakaï RL (2015) Latitudinal distribution, co-occurring tree species and structural diversity of the threatened palm Borassus aethiopum (Arecaceae) in Benin, West Africa. Plant Ecol Evol 148:335–349. https://doi.org/10.5091/plecevo.2015.1046

    Article  Google Scholar 

  62. Salako VK, Houehanou TH, Assogbadjo AE, Akoegninou A, Glele Kakai RL (2017) Patterns of elephant utilization of Borassus aethiopum Mart. and its stand structure in the Pendjari National Park, Benin, West Africa. Trop Ecol 58:425–437

    Google Scholar 

  63. Salako VK, Kénou C, Dainou K, Assogbadjo AE, Glèlè Kakaï R (2018a) Impacts of land use types on spatial patterns and neighbourhood distance of the agroforestry palm Borassus aethiopum Mart. in two climatic regions in Benin. Agrofor Syst, West Africa. https://doi.org/10.1007/s10457-018-0205-y

    Google Scholar 

  64. Salako VK, Moreira F, Gbedomon RC, Tovissodé F, Assogbadjo AE, Glèlè Kakaï R (2018b) Traditional knowledge and cultural importance of Borassus aethiopum Mart. in Benin: interacting effects of socio-demographic attributes and multi-scale abundance. J Ethnobiol Ethnomed. https://doi.org/10.1186/s13002-018-0233-8

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sales MH, Souza CM, Kyriakidis PC, Roberts DA, Vidal E (2007) Improving spatial distribution estimation of forest biomass with geostatistics: a case study for Rondônia, Brazil. Ecol Modell 205:221–230. https://doi.org/10.1016/j.ecolmodel.2007.02.033

    Article  Google Scholar 

  66. Sambou B, Goudiaby A, Ervik F, Diallo D, Camara MC (2002) Palm wine harvesting by the Bassari threatens Borassus aethiopum populations in north-western Guinea. Biodivers Conserv 11:1149–1161

    Article  Google Scholar 

  67. Sanchez AC, Osborne PE, Haq N (2010) Identifying the global potential for baobab tree cultivation using ecological niche modelling. Agrofor Syst 80:191–201. https://doi.org/10.1007/s10457-010-9282-2

    Article  Google Scholar 

  68. Schumann K, Wittig R, Thiombiano A, Becker U, Hahn K (2011) Impact of land-use type and harvesting on population structure of a non-timber forest product-providing tree in a semi-arid savanna, West Africa. Biol Conserv 144:2369–2376. https://doi.org/10.1016/j.biocon.2011.06.018

    Article  Google Scholar 

  69. Schwartz MW (2012) Using niche models with climate projections to inform conservation management decisions. Biol Conserv 155:149–156. https://doi.org/10.1016/j.biocon.2012.06.011

    Article  Google Scholar 

  70. Siaw DEKA, Asamoah EF, Baidoe GA (2014) The stock and socio-economic uses of Borassus aethiopum in Abrimasu forest reserve of Mampong forest district. J Energy Nat Resour Manag 1:148–155

    Google Scholar 

  71. Stocker T et al (2013) IPCC 2013: summary for policy makers. In: Climate change 2013: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York

  72. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  Google Scholar 

  73. Trimble MJ, Van-Aarde RJ (2014) Supporting conservation with biodiversity research in sub-Saharan Africa’s human-modified landscapes. Biodivers Conserv 23:2345–2369

    Article  Google Scholar 

  74. Valladares F et al (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17:1351–1364

    Article  Google Scholar 

  75. Van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  76. VanDerWal J, Shoo LP, Johnson CN, Williams SE (2009) Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. Am Nat 174:282–291

    Article  PubMed  Google Scholar 

  77. Vaughan M, Black SH (2006) Improving forage for native bee crop pollinators. USDA National Agroforestry Center, Blacksburg

    Google Scholar 

  78. Vihotogbé R, Kakaï RG, Bongers F, van Andel T, van den Berg RG, Sinsin B, Sosef MS (2014) Impacts of the diversity of traditional uses and potential economic value on food tree species conservation status: case study of African bush mango trees (Irvingiaceae) in the Dahomey Gap (West Africa). Plant Ecol Evol 147:109–125

    Article  Google Scholar 

  79. Vihotogbé R, Idohou R, Gebauer J, Sinsin B, Peterson AT (2018) Estimation of cultivable areas for Irvingia gabonensis and I. wombolu (Irvingiaceae) in Dahomey-Gap (West Africa). Agrofor Syst. https://doi.org/10.1007/s10457-018-0193-y

    Article  Google Scholar 

  80. Volkoff B, Willaime P (1976) Carte pédologique de reconnaissance de la République Populaire du Bénin à 1/200 000: feuille de Porto-Novo

  81. Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x

    Article  Google Scholar 

  82. Weigend M, Luebert F, Treydte C, Poretschkin C, Boehnert T, Mutke J, Chacon J (2016) Pattern and process in Andean biodiversity. In: European conference of tropical ecology: tropical diversity, ecology and land use Goettingen, Germany, 23–26 Feb, 2016

  83. White F (1983) The vegetation of Africa, a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa (3 Plates, Northwestern Africa, Northeastern Africa, and Southern Africa, 1: 5,000,000). UNESCO, Paris

    Google Scholar 

  84. Yoshino K, Kawaguchi S, Kanda F, Kushida K, Tsai F (2010) Characteristics of spatial distribution of plant communities at the high moor in Kushiro wetland using aerial color photographs of super high spatial resolution. Int Arch Photogramm Remote Sens Spat Inf Sci 38:522–527

    Google Scholar 

  85. Zhang C, McGrath D (2004) Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma 119:261–275. https://doi.org/10.1016/j.geoderma.2003.08.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the International Foundation for Science through research Grant (No D/5448-1) to Valère Salako. We are grateful to Dr. A. Belarmain Fandohan and Dr. Gérard N. Gouwakinnou for insightful discussions when preparing and revising this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Valère Kolawolé Salako.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salako, V.K., Vihotogbé, R., Houéhanou, T. et al. Predicting the potential impact of climate change on the declining agroforestry species Borassus aethiopum Mart. in Benin: a mixture of geostatistical and SDM approach. Agroforest Syst 93, 1513–1530 (2019). https://doi.org/10.1007/s10457-018-0262-2

Download citation

Keywords

  • SDM
  • Geostatistics
  • MaxEnt
  • Underutilized species
  • Palm
  • Agroforestry