Advertisement

Predicting the potential impact of climate change on the declining agroforestry species Borassus aethiopum Mart. in Benin: a mixture of geostatistical and SDM approach

  • Valère Kolawolé Salako
  • Romaric Vihotogbé
  • Thierry Houéhanou
  • Idelphonse Akoeugnigan Sodé
  • Romain Glèlè Kakaï
Article

Abstract

Predicted effects of climate change (CC) on plant species distribution have raised concerns on their conservation and domestication. Appropriate stand density may enhance species ability to adapt to CC. Therefore, combining species distribution modeling (SDM) and spatial pattern of density should provide insightful information for setting conservation actions. We combined geostatistical and SDM techniques to assess (1) current tree density spatial pattern and its relationship with bioclimatic zone (humid, sub-humid, and semi-arid), land-use type (protected areas vs. agrosystems), and soil type (eight types), and (2) present-day and future distributions of suitable habitats under low-RCP4.5 and high-RCP8.5 emissions scenarios for Borassus aethiopum, a declining agroforestry palm in Benin. Data were obtained from 2880 one-ha plots. Semivariogram and kriging were used to model spatial patterns of density while Maximum Entropy was used for SDM. Tree density followed an isotropic spatial model with a range of 2.15 km, indicating extremely fragmented density pattern. Tree density was 8-times higher in protected areas (PAs, 68.6 ± 5.09 trees ha−1) than in agrosystems (8.4 ± 0.31 trees ha−1) and greater on ferruginous soils. Though 80% of the country was currently highly suitable with similar trend for PAs and agrosystems, future predictions showed major habitat loss (20–61%), particularly under RCP8.5. While changes were similar between PAs and agrosystems, the decrease in habitat suitability was pronounced in the semi-arid zone where the species is currently widely-distributed with higher abundance. Very weak link was found between present-day abundance and present-day and future distribution. It is concluded that B. aethiopum has a fragmented density pattern and will be sensitive to CC. In-situ and circa-situ conservations or orchards establishment were suggested depending on the projected changes and the bioclimatic zone. The approach used here is exemplary for other agroforestry tree species.

Keywords

SDM Geostatistics MaxEnt Underutilized species Palm Agroforestry 

Notes

Acknowledgements

This research was partially supported by the International Foundation for Science through research Grant (No D/5448-1) to Valère Salako. We are grateful to Dr. A. Belarmain Fandohan and Dr. Gérard N. Gouwakinnou for insightful discussions when preparing and revising this manuscript.

References

  1. Adomou AC (2005) Vegetation patterns and environmental gradients in Benin Implications for biogeography and conservation PhD diss. Wageningen University, WageningenGoogle Scholar
  2. Adomou A, Agbani O, Sinsin B (2011) Plantes. Plants Protection de la nature en Afrique de l’Ouest: Une liste rouge pour le Bénin Nature Conservation in West Africa: Red List for Benin, International Institute of Tropical Agriculture, Ibadan, Nigeria:365Google Scholar
  3. Akoègninou A, Van der Burg W, Van der Maesen L (2006) Flore analytique du Bénin, vol 06.2. Backhuys Publishers, LeidenGoogle Scholar
  4. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  5. Assogbadjo AE, Glèlè Kakaï RL, Vodouhê F, Djagoun CAMS, Codjia JTC, Sinsin B (2012) Biodiversity and socioeconomic factors supporting farmers’ choice of wild edible trees in the agroforestry systems of Benin (West Africa). For Policy Econ 14:41–49CrossRefGoogle Scholar
  6. Baillargeon S (2005) Le krigeage: revue de la théorie et application à l’interpolation spatiale de données de précipitations. Université Laval, LavalGoogle Scholar
  7. Barot S, Gignoux J, Vuattoux R, Legendre S (2000) Demography of a savanna palm tree in Ivory Coast (Lamto): population persistence and life-history. J Trop Ecol 16:637–655CrossRefGoogle Scholar
  8. Barve N et al (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Modell 222:1810–1819.  https://doi.org/10.1016/j.ecolmodel.2011.02.011 CrossRefGoogle Scholar
  9. Bayton RP (2007) A revision of Borassus L. (Arecaceae). Kew Bull 62:561–585Google Scholar
  10. Blach-Overgaard A, Svenning J-C, Dransfield J, Greve M, Balslev H (2010) Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33:380–391Google Scholar
  11. Blach-Overgaard A, Balslev H, Dransfield J, Normand S, Svenning J-C (2015) Global-change vulnerability of a key plant resource, the African palms Scientific Reports 5Google Scholar
  12. Bourou S, Bowe C, Diouf M, Van Damme P (2012) Ecological and human impacts on stand density and distribution of tamarind (Tamarindus indica L.) in Senegal. Afr J Ecol 50:253–265Google Scholar
  13. Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5:694–700CrossRefGoogle Scholar
  14. Cabannes Y, Chantry G (1987) Le rônier et le palmier à sucre dans l’habitat Edition GRET (France) 90Google Scholar
  15. Christakos G, Bogaert P, Serre M (2002) Temporal GIS, with CD-ROM. Springer, New YorkGoogle Scholar
  16. Dawson IK, Lengkeek A, Weber JC, Jamnadass R (2009) Managing genetic variation in tropical trees: linking knowledge with action in agroforestry ecosystems for improved conservation and enhanced livelihoods. Biodivers Conserv 18:969–986.  https://doi.org/10.1007/s10531-008-9516-z CrossRefGoogle Scholar
  17. Djossa BA, Fahr J, Wiegand T, Ayihouénou B, Kalko E, Sinsin B (2008) Land use impact on Vitellaria paradoxa CF Gaerten. stand structure and distribution patterns: a comparison of Biosphere Reserve of Pendjari in Atacora district in Benin. Agrofor Syst 72:205–220CrossRefGoogle Scholar
  18. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342CrossRefGoogle Scholar
  19. Fandohan B, Assogbadjo AE, Glele Kakaï RL, Sinsin B, Van Damme P (2010) Impact of habitat type on the conservation status of tamarind (Tamarindus indica L.) populations in the W National Park of Benin. Fruits 65:11–19CrossRefGoogle Scholar
  20. Fandohan B, Gouwakinnou GN, Fonton NH, Sinsin B, Liu J (2013) Impact des changements climatiques sur la répartition géographique des aires favorables à la culture et à la conservation des fruitiers sous-utilisés: cas du tamarinier au Bénin. Biotechnol Agron Soc Environ 17:450–462Google Scholar
  21. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  22. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, OxfordGoogle Scholar
  23. Gouwakinnou GN, Kindomihou V, Assogbadjo AE, Sinsin B (2009) Population structure and abundance of Sclerocarya birrea (A. Rich) Hochst subsp. birrea in two contrasting land-use systems in Benin. Int J Biodivers Conserv 1:194–201Google Scholar
  24. Haarmeyer DH, Schumann K, Bernhardt-Römermann M, Wittig R, Thiombiano A, Hahn K (2013) Human impact on population structure and fruit production of the socio-economically important tree Lannea microcarpa in Burkina Faso. Agrofor Syst 87:1363–1375CrossRefGoogle Scholar
  25. Harris RMB, Grose MR, Lee G, Bindoff NL, Porfirio LL, Fox-Hughes P (2014) Climate projections for ecologists. Wiley Interdiscip Rev Clim Change 5:621–637CrossRefGoogle Scholar
  26. Hijmans R, Cameron S, Parra J, Jones P, Jarvis A (2004) The WorldClim interpolated global terrestrial climate surfaces. Version 1.3Google Scholar
  27. Idohou R, Assogbadjo AE, Kakaï RG, Peterson AT (2016) Spatio-temporal dynamic of suitable areas for species conservation in West Africa: eight economically important wild palms under present and future climates. Agrofor Syst.  https://doi.org/10.1007/s10457-016-9955-6 CrossRefGoogle Scholar
  28. INSAE (2013) Résultats provisoires du RGPH4. Cotonou, BeninGoogle Scholar
  29. Jahnke HE, Jahnke HE (1982) Livestock production systems and livestock development in tropical Africa vol 35. Kieler Wissenschaftsverlag Vauk KielGoogle Scholar
  30. Jiménez-Valverde A (2011) Opinion: relationship between local population density and environmental suitability estimated from occurrence data. Front Biogeogr 3:59–61Google Scholar
  31. Judex M, Röhrig J, Schulz O, Thamm H (2009) IMPETUS Atlas du Bénin. Résultats de recherche 2000–2007 Département de Géographie, Université de Boon, BoonGoogle Scholar
  32. Keshavarzi A, Sarmadian F, Odagiu A (2013) Predictive modeling of soil and plant distributions. ProEnvironment/ProMediu 6:17–25Google Scholar
  33. Leakey RR et al (2004) Evidence that subsistence farmers have domesticated indigenous fruits (Dacryodes edulis and Irvingia gabonensis) in Cameroon and Nigeria. Agrofor Syst 60:101–111CrossRefGoogle Scholar
  34. Leakey RR et al (2012) Tree domestication in agroforestry: progress in the second decade (2003–2012). In: Nair PKR, Garrity D (eds) Agroforestry-the future of global land use. Springer, New York, pp 145–173CrossRefGoogle Scholar
  35. Liedtke Tesar ML (2011) A comparison of spatial prediction techniques using both hard and soft data. University of Nebraska-Lincoln, LincolnGoogle Scholar
  36. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRefGoogle Scholar
  37. Liu D et al (2006) Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China. Agric Ecosyst Environ 113:73–81.  https://doi.org/10.1016/j.agee.2005.09.006 CrossRefGoogle Scholar
  38. Luo Z, Sun OJ, Xu H (2010) A comparison of species composition and stand structure between planted and natural mangrove forests in Shenzhen Bay, South China. J Plant Ecol 3:165–174.  https://doi.org/10.1093/jpe/rtq004 CrossRefGoogle Scholar
  39. McKee J, Chambers E, Guseman J (2013) Human population density and growth validated as extinction threats to mammal and bird species. Hum Ecol 41:773–778.  https://doi.org/10.1007/s10745-013-9586-8 CrossRefGoogle Scholar
  40. Miller AJ, Knouft JH (2006) GIS-based characterization of the geographic distributions of wild and cultivated populations of the Mesoamerican fruit tree Spondias purpurea (Anacardiaceae). Am J Bot 93:1757–1767CrossRefPubMedGoogle Scholar
  41. Mollet M, Herzog F, Behi Y, Farah Z (2000) Sustainable Exploitation of Borassus aethiopum, Elaeis guineensis and Raphia hookeri for the Extraction of Palm Wine in Côte d’Ivoire. Environ Dev Sustain 2:45–59CrossRefGoogle Scholar
  42. N’Danikou S, Achigan-Dako EG, Tchokponhoue DA, Agossou CO, Houdegbe CA, Vodouhe RS, Ahanchede A (2015) Modelling socioeconomic determinants for cultivation and in-situ conservation of Vitex doniana Sweet (Black plum), a wild harvested economic plant in Benin. J Ethnobiol Ethnomed 11:1CrossRefGoogle Scholar
  43. Nachtergaele F, van Velthuizen H, Verelst L, Wiberg D (2012) Harmonized World Soil Database, Version 1.2, FAO, IIASA, ISRIC, ISSCAS, JRCGoogle Scholar
  44. Nagelkerke NJ (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692CrossRefGoogle Scholar
  45. Nair R (1991) State-of-the-art of agroforestry systems. For Ecol Manag 45:5–29CrossRefGoogle Scholar
  46. Nair R, Nair VD, Kumar BM, Showalter JM (2010) Chapter five-carbon sequestration in agroforestry systems. Adv Agron 108:237–307.  https://doi.org/10.1016/S0065-2113(10)08005-3 CrossRefGoogle Scholar
  47. Nielsen SE, Johnson CJ, Heard DC, Boyce MS (2005) Can models of presence-absence be used to scale abundance? two case studies considering extremes in life history. Ecography 28:197–208.  https://doi.org/10.1111/j.0906-7590.2005.04002.x CrossRefGoogle Scholar
  48. Nogués-Bravo D (2009) Predicting the past distribution of species climatic niches. Glob Ecol Biogeogr 18:521–531CrossRefGoogle Scholar
  49. Nyadoi P et al (2009) Tamarinds (Tamarindus indica L.) niche tree species diversity characterisation reveals conservation needs and strategies. Int J Biodivers Conserv 1:151–176Google Scholar
  50. Ouinsavi C, Gbémavo C, Sokpon N (2011) Ecological structure and fruit production of African fan palm (Borassus aethiopum) populations American. J Plant Sci 2:733–743CrossRefGoogle Scholar
  51. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371CrossRefGoogle Scholar
  52. Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117CrossRefGoogle Scholar
  53. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259CrossRefGoogle Scholar
  54. Platts PJ, Omeny PA, Marchant R (2015) AFRICLIM 3.0: high-resolution ensemble climate projections for Africa. Afr J Ecol.  https://doi.org/10.6084/m9.figshare.1284624 CrossRefGoogle Scholar
  55. Queiroz TFd, Baughman C, Baughman O, Gara M, Williams N (2012) Species distribution modeling for conservation of rare, edaphic endemic plants in White River Valley, Nevada. Nat Areas J 32:149–158CrossRefGoogle Scholar
  56. R Core Team (2015) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. R Foundation for Statistical Computing. ISBN 3-900051-07-0. http://www.R-project.org
  57. Robiansyah I, Hajar AS (2015) Predicting current and future distribution of endangered tree Dracaena ombet Kotschy and Peyr. Under climate change. In: Proceedings of the national academy of sciences, India section B: biological sciences pp 1–8Google Scholar
  58. Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Change 2:248–253.  https://doi.org/10.1038/nclimate1385 CrossRefGoogle Scholar
  59. Rossi J et al (2009) Spatial structures of soil organic carbon in tropical forests—A case study of Southeastern Tanzania. CATENA 77:19–27CrossRefGoogle Scholar
  60. Rossiter D (2007) Technical Note: Co-kriging with the gstat package of the R environment for statistical computing. Enschede (NL): International Institute for Geo-information Science & Earth Observation (ITC)Google Scholar
  61. Salako VK, Assogbadjo AE, Adomou AC, Agbangla C, Glèlè Kakaï RL (2015) Latitudinal distribution, co-occurring tree species and structural diversity of the threatened palm Borassus aethiopum (Arecaceae) in Benin, West Africa. Plant Ecol Evol 148:335–349.  https://doi.org/10.5091/plecevo.2015.1046 CrossRefGoogle Scholar
  62. Salako VK, Houehanou TH, Assogbadjo AE, Akoegninou A, Glele Kakai RL (2017) Patterns of elephant utilization of Borassus aethiopum Mart. and its stand structure in the Pendjari National Park, Benin, West Africa. Trop Ecol 58:425–437Google Scholar
  63. Salako VK, Kénou C, Dainou K, Assogbadjo AE, Glèlè Kakaï R (2018a) Impacts of land use types on spatial patterns and neighbourhood distance of the agroforestry palm Borassus aethiopum Mart. in two climatic regions in Benin. Agrofor Syst, West Africa.  https://doi.org/10.1007/s10457-018-0205-y CrossRefGoogle Scholar
  64. Salako VK, Moreira F, Gbedomon RC, Tovissodé F, Assogbadjo AE, Glèlè Kakaï R (2018b) Traditional knowledge and cultural importance of Borassus aethiopum Mart. in Benin: interacting effects of socio-demographic attributes and multi-scale abundance. J Ethnobiol Ethnomed.  https://doi.org/10.1186/s13002-018-0233-8 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sales MH, Souza CM, Kyriakidis PC, Roberts DA, Vidal E (2007) Improving spatial distribution estimation of forest biomass with geostatistics: a case study for Rondônia, Brazil. Ecol Modell 205:221–230.  https://doi.org/10.1016/j.ecolmodel.2007.02.033 CrossRefGoogle Scholar
  66. Sambou B, Goudiaby A, Ervik F, Diallo D, Camara MC (2002) Palm wine harvesting by the Bassari threatens Borassus aethiopum populations in north-western Guinea. Biodivers Conserv 11:1149–1161CrossRefGoogle Scholar
  67. Sanchez AC, Osborne PE, Haq N (2010) Identifying the global potential for baobab tree cultivation using ecological niche modelling. Agrofor Syst 80:191–201.  https://doi.org/10.1007/s10457-010-9282-2 CrossRefGoogle Scholar
  68. Schumann K, Wittig R, Thiombiano A, Becker U, Hahn K (2011) Impact of land-use type and harvesting on population structure of a non-timber forest product-providing tree in a semi-arid savanna, West Africa. Biol Conserv 144:2369–2376.  https://doi.org/10.1016/j.biocon.2011.06.018 CrossRefGoogle Scholar
  69. Schwartz MW (2012) Using niche models with climate projections to inform conservation management decisions. Biol Conserv 155:149–156.  https://doi.org/10.1016/j.biocon.2012.06.011 CrossRefGoogle Scholar
  70. Siaw DEKA, Asamoah EF, Baidoe GA (2014) The stock and socio-economic uses of Borassus aethiopum in Abrimasu forest reserve of Mampong forest district. J Energy Nat Resour Manag 1:148–155Google Scholar
  71. Stocker T et al (2013) IPCC 2013: summary for policy makers. In: Climate change 2013: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New YorkGoogle Scholar
  72. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293CrossRefPubMedGoogle Scholar
  73. Trimble MJ, Van-Aarde RJ (2014) Supporting conservation with biodiversity research in sub-Saharan Africa’s human-modified landscapes. Biodivers Conserv 23:2345–2369CrossRefGoogle Scholar
  74. Valladares F et al (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17:1351–1364CrossRefPubMedGoogle Scholar
  75. Van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  76. VanDerWal J, Shoo LP, Johnson CN, Williams SE (2009) Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. Am Nat 174:282–291CrossRefPubMedGoogle Scholar
  77. Vaughan M, Black SH (2006) Improving forage for native bee crop pollinators. USDA National Agroforestry Center, BlacksburgGoogle Scholar
  78. Vihotogbé R, Kakaï RG, Bongers F, van Andel T, van den Berg RG, Sinsin B, Sosef MS (2014) Impacts of the diversity of traditional uses and potential economic value on food tree species conservation status: case study of African bush mango trees (Irvingiaceae) in the Dahomey Gap (West Africa). Plant Ecol Evol 147:109–125CrossRefGoogle Scholar
  79. Vihotogbé R, Idohou R, Gebauer J, Sinsin B, Peterson AT (2018) Estimation of cultivable areas for Irvingia gabonensis and I. wombolu (Irvingiaceae) in Dahomey-Gap (West Africa). Agrofor Syst.  https://doi.org/10.1007/s10457-018-0193-y CrossRefGoogle Scholar
  80. Volkoff B, Willaime P (1976) Carte pédologique de reconnaissance de la République Populaire du Bénin à 1/200 000: feuille de Porto-NovoGoogle Scholar
  81. Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611.  https://doi.org/10.1111/j.1600-0587.2009.06142.x CrossRefGoogle Scholar
  82. Weigend M, Luebert F, Treydte C, Poretschkin C, Boehnert T, Mutke J, Chacon J (2016) Pattern and process in Andean biodiversity. In: European conference of tropical ecology: tropical diversity, ecology and land use Goettingen, Germany, 23–26 Feb, 2016Google Scholar
  83. White F (1983) The vegetation of Africa, a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa (3 Plates, Northwestern Africa, Northeastern Africa, and Southern Africa, 1: 5,000,000). UNESCO, ParisGoogle Scholar
  84. Yoshino K, Kawaguchi S, Kanda F, Kushida K, Tsai F (2010) Characteristics of spatial distribution of plant communities at the high moor in Kushiro wetland using aerial color photographs of super high spatial resolution. Int Arch Photogramm Remote Sens Spat Inf Sci 38:522–527Google Scholar
  85. Zhang C, McGrath D (2004) Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma 119:261–275.  https://doi.org/10.1016/j.geoderma.2003.08.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Biomathématiques et d’Estimations Forestières, Faculté des Sciences AgronomiquesUniversité d’Abomey-CalaviCotonouBenin
  2. 2.Ecole de Foresterie et d’Ingénierie du BoisUniversité d’Agriculture de KétouKétouBenin
  3. 3.Faculté d’AgronomieUniversité de ParakouParakouBenin

Personalised recommendations