Advertisement

Impacts of land use types on spatial patterns and neighbourhood distance of the agroforestry palm Borassus aethiopum Mart. in two climatic regions in Benin, West Africa

  • Valère Kolawolé Salako
  • Christel Kénou
  • Kasso Dainou
  • Achille Ephrem Assogbadjo
  • Romain Glèlè Kakaï
Article

Abstract

Spatial pattern (SP) and neighbourhood distance (ND) of trees are crucial for pollination services, in particular for dioecious species. However, land use types through human disturbances may affect the natural SP and ND and possibly have a negative effect on pollination services. Though several studies have focused on the effect of land use types on SP of trees, few have reported on ND. In this study, we compared SP and ND of the dioecious Borassus aethiopum Mart. between two land use types (protected areas vs farmlands) in two contrasting climatic regions (semi-arid vs sub-humid) in Benin. Trees were mapped in twelve plots from six populations. Pair-correlation function was used to generate univariate and bivariate SP and ND. Next, ANOVA was used to compare ND. While supporting the overall trend towards a less aggregated pattern along plant life-cycle, the study showed that the SP of B. aethiopum was altered from aggregated and spatial association in protected areas toward random and independence patterns in farmlands with increased ND among individuals, particularly between adult males and females. In addition, differences in ND between land use types varied across climatic regions, the differences being higher in the drier semi-arid region, thus suggesting more intense human activities in this region and climatic region-specific management. Management actions should mainly aim at reducing or not further increasing ND, particularly between female and male adult populations in farmlands in the semi-arid region through planting new individuals of B. aethiopum trees or limiting their removal but at the same time account for other tree species to maximise diversity of farmlands’ functions and services. Further studies should examine whether the observed increased ND due to human-disturbances in farmlands is detrimental for the species pollination services, fruit production and whether it affects the species spatio-temporal population genetic structuring.

Keywords

Climatic conditions Anthropogenic pressure Impacts Spatial pattern Point pattern process 

Notes

Acknowledgements

This research was supported by the International Foundation for Science, Stockholm, Sweden through a grant to Valère K. Salako (No D/5448-1). We also benefited from a PhD research fellow of the University of Abomey-Calavi under the project “WILD-PALM”. The authors are very grateful to the local people, especially women collectors and sellers of fruits and young shoots of B. aethiopum for their kind assistance, to Mélain Anago and Pathmos Akouété for field assistance.

References

  1. Abdourhamane H, Rabiou H, Diouf A, Morou B, Mahamane A, Bellefontaine R (2017) Structure démographique et répartition spatiale des populations de Sclerocarya birrea (A. Rich.) Hochst. du secteur sahélien du Niger Bois & Forets des Tropiques 333:55–66Google Scholar
  2. Adomou CA, Agbani OP, Sinsin B (2011) Plants. In: Neuenschwander P, Sinsin B, Goergen G (eds) Protection de la nature en Afrique de l’Ouest: Une Liste Rouge pour le Bénin. Nature conservation in West Africa: Red List for Benin. International Institute of Tropical Agriculture, Cotonou, pp 21–46Google Scholar
  3. Agyarko K, Samuel K, Russel B, Tony KM, Antuong IS (2014) Views of preventing Borassus aethiopum from extinction among four communities in Ghana. J Natural Sci Res 4:83–89Google Scholar
  4. Assogbadjo AE, Glèlè Kakaï RL, Vodouhê F, Djagoun CAMS, Codjia JTC, Sinsin B (2012) Biodiversity and socioeconomic factors supporting farmers’ choice of wild edible trees in the agroforestry systems of Benin (West Africa). For Policy Econ 14:41–49.  https://doi.org/10.1016/j.forpol.2011.07.013 CrossRefGoogle Scholar
  5. Avocevou-Ayisso C, Sinsin B, Adegbidi A, Dossou G, Van Damme P (2009) Sustainable use of non-timber forest products: impact of fruit harvesting on Pentadesma butyracea regeneration and financial analysis of its products trade in Benin. For Ecol Manage 257:1930–1938.  https://doi.org/10.1016/j.foreco.2009.01.043 CrossRefGoogle Scholar
  6. Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12:1–42CrossRefGoogle Scholar
  7. Barot S, Gignoux J (1999) Population structure and life cycle of Borassus aethiopum Mart.: evidence of early senescence in a palm tree. Biotropica 31:439–448CrossRefGoogle Scholar
  8. Barot S, Gignoux J, Menaut J-C (1999) Demography of a savanna palm tree: predictions from comprehensive spatial pattern analyses. Ecology 80:1987–2005CrossRefGoogle Scholar
  9. Barot S, Gignoux J, Vuattoux R, Legendre S (2000) Demography of a savanna palm tree in Ivory Coast (Lamto): population persistence and life-history. J Trop Ecol 16:637–655CrossRefGoogle Scholar
  10. Bawa KS (1990) Plant–pollinator interactions in tropical rain forests. Annu Rev Ecol Syst 21:399–422CrossRefGoogle Scholar
  11. Benot ML, Bittebiere AK, Ernoult A, Clement B, Mony C (2013) Fine-scale spatial patterns in grassland communities depend on species clonal dispersal ability and interactions with neighbours. J Ecol 101:626–636CrossRefGoogle Scholar
  12. Berry EJ (2006) Population ecology of the harvested understory palm Chamaedorea radicalis: pollination biology, female fecundity, and source-sink population dynamics. Miami UniversityGoogle Scholar
  13. Bierzychudek P, Eckhart V (1988) Spatial segregation of the sexes of dioecious plants. Am Nat 132:34–43CrossRefGoogle Scholar
  14. Cabannes Y, Chantry G (1987) Le rônier et le palmier à sucre dans l’habitat Edition GRET (France)Google Scholar
  15. Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453CrossRefGoogle Scholar
  16. Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dyn Popul 298:312Google Scholar
  17. Diallo OB (2001) Biologie de la reproduction et évaluation de la diversité génétique chez une légumineuse: Tamarindus indica L. (Caesalpinioideae)Google Scholar
  18. Diggle PJ (2003) Statistical analysis of spatial point patterns, 2nd edn. Academic Press, New YorkGoogle Scholar
  19. Djossa BA, Fahr J, Wiegand T, Ayihouénou B, Kalko E, Sinsin B (2008) Land use impact on Vitellaria paradoxa CF Gaerten. stand structure and distribution patterns: a comparison of Biosphere Reserve of Pendjari in Atacora district in Benin. Agrofor Syst 72:205CrossRefGoogle Scholar
  20. Gaoue OG, Ticktin T (2007) Patterns of harvesting foliage and bark from the multipurpose tree Khaya senegalensis in Benin: variation across ecological regions and its impacts on population structure. Biol Cons 137:424–436CrossRefGoogle Scholar
  21. Gbesso F, Akouehou G, Tente B, Akoegninou A (2013) Aspects technico-économiques de la transformation de Borassus aethiopum Mart (arecaceae) au Centre-Bénin Afrique Science. Revue Internationale des Sciences et Technologie 9:159–173Google Scholar
  22. Gouwakinnou GN, Lykke AM, Djossa BA, Sinsin B (2011) Folk perception of sexual dimorphism, sex ratio, and spatial repartition: implications for population dynamics of Sclerocarya birrea [(A. Rich) Hochst] populations in Benin. West Africa Agrofor Syst 82:25–35CrossRefGoogle Scholar
  23. Graham MH, Edwards MS (2001) Statistical significance versus fit: estimating the importance of individual factors in ecological analysis of variance. Oikos 93:505–513CrossRefGoogle Scholar
  24. Gruca M, Yu W, Amoateng P, Nielsen MA, Poulsen TB, Balslev H (2015) Ethnomedicinal survey and in vitro anti-plasmodial activity of the palm Borassus aethiopum Mart. J Ethnopharmacol 175:356–369CrossRefPubMedGoogle Scholar
  25. Herzog F, Farah Z, Amado R (1995) Chemical composition and nutritional significance of wines from the palms Elaeis guineensis and Borassus aethiopum in the V-Baoulé. Côte d’Ivoire Tropical Science 35:30–39Google Scholar
  26. Idohou R, Assogbadjo AE, Azihou F, Kakaï RG, Adomou A (2016) Influence of the landscape context on stand structure and spatial patterns of the doum palm (Hyphaene thebaica Mart.) in the Republic of Benin (West Africa). Agrofor Syst 90:591–605CrossRefGoogle Scholar
  27. Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns, vol 70. Wiley, ChichesterGoogle Scholar
  28. INSAE (2013) Résultats provisoires du RGPH4. In: Résultats provisoires du RGPH4. INSAE, Cotonou, p 7Google Scholar
  29. Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528CrossRefGoogle Scholar
  30. Kelly A, Bouvet J-M, Picard N (2004a) Size class distribution and spatial pattern of Vitellaria paradoxa in relation to farmers’ practices in Mali. Agrofor Syst 60:3–11CrossRefGoogle Scholar
  31. Kelly AB, Hardy O, Bouvet JM (2004b) Temporal and spatial genetic structure in Vitellaria paradoxa (shea tree) in an agroforestry system in southern Mali. Mol Ecol 13:1231–1240CrossRefPubMedGoogle Scholar
  32. Lejeune P (2001) Arpent 2.0, logiciel de saisie de données d’arpentage – Guide d’utilisation FUSAGx. Note Tech For 5:1–12Google Scholar
  33. Liu Y, Li F, Jin G (2014) Spatial patterns and associations of four species in an old-growth temperate forest. J Plant Interact 9:745–753CrossRefGoogle Scholar
  34. Martínez I, González Taboada F, Wiegand T, Obeso JR (2013) Spatial patterns of seedling-adult associations in a temperate forest community. For Ecol Manag 296:74–80.  https://doi.org/10.1016/j.foreco.2013.02.005 CrossRefGoogle Scholar
  35. Martínez-Ballesté A, Mandujano MC (2013) The consequences of harvesting on regeneration of a non-timber wax producing species (Euphorbia antisyphilitica Zucc.) of the Chihuahuan Desert. Econ Bot 67:121–136CrossRefGoogle Scholar
  36. Mollet M, Herzog F, Behi Y, Farah Z (2000) Sustainable exploitation of Borassus aethiopum, Elaeis guineensis and Raphia hookeri for the extraction of palm wine in Côte d’Ivoire. Environ Dev Sustain 2:45–59.  https://doi.org/10.1023/A%3A1010035915512 CrossRefGoogle Scholar
  37. Osunkoya OO (1999) Population structure and breeding biology in relation to conservation in the dioecious Gardenia actinocarpa (Rubiaceae): a rare shrub of North Queensland rainforest. Biol Cons 88:347–359CrossRefGoogle Scholar
  38. Ouinsavi C, Gbémavo C, Sokpon N (2011) Ecological structure and fruit production of African fan palm (Borassus aethiopum) populations American. J Plant Sci 2:733–743.  https://doi.org/10.4236/ajps.2011.26088 CrossRefGoogle Scholar
  39. Phillips DL, MacMahon JA (1981) Competition and spacing patterns in desert shrubs. J Ecol 69:97–115CrossRefGoogle Scholar
  40. Pommerening A (2002) Approaches to quantifying forest structures. Forestry 75:305–324CrossRefGoogle Scholar
  41. R Core Team (2015) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. R Foundation for Statistical Computing. ISBN 3-900051-07-0. http://www.R-project.org
  42. Ripley BD (1991) Statistical inference for spatial processes. Cambridge University Press, CambridgeGoogle Scholar
  43. Salako VK, Assogbadjo AE, Adomou AC, Agbangla C, Glèlè Kakaï RL (2015) Latitudinal distribution, co-occurring tree species and structural diversity of the threatened palm Borassus aethiopum (Arecaceae) in Benin. West Africa Plant Ecol Evol 148:335–349.  https://doi.org/10.5091/plecevo.2015.1046 CrossRefGoogle Scholar
  44. Salako VK, Azihou AF, Assogbadjo AE, Houéhanou TD, Kassa BD, Glèlè Kakaï RL (2016) Elephant-induced damage drives spatial isolation of the dioecious palm Borassus aethiopum Mart. (Arecaceae) in the Pendjari National Park. Benin African J Ecol 54:9–19.  https://doi.org/10.1111/aje.12253 CrossRefGoogle Scholar
  45. Schmidt IB, Mandle L, Ticktin T, Gaoue OG (2011) What do matrix population models reveal about the sustainability of non-timber forest product harvest? J Appl Ecol 48:815–826CrossRefGoogle Scholar
  46. Schumann K, Wittig R, Thiombiano A, Becker U, Hahn K (2011) Impact of land-use type and harvesting on population structure of a non-timber forest product-providing tree in a semi-arid savanna. West Africa Biol Conserv 144:2369–2376.  https://doi.org/10.1016/j.biocon.2011.06.018 CrossRefGoogle Scholar
  47. Sinsin B, Matig OE, Assogbadjo A, Gaoué O, Sinadouwirou T (2004) Dendrometric characteristics as indicators of pressure of Afzelia africana Sm. dynamic changes in trees found in different climatic zones of Benin. Biodivers Conserv 13:1555–1570CrossRefGoogle Scholar
  48. Somanathan H, Borges RM (2000) Influence of exploitation on population structure, spatial distribution and reproductive success of dioecious species in a fragmented cloud forest in India. Biol Cons 94:243–256.  https://doi.org/10.1016/S0006-3207(99)00170-6 CrossRefGoogle Scholar
  49. Stoyan D, Stoyan H (1994) Fractals, random shapes and point fields: methods of geometrical statistics. Wiley, New YorkGoogle Scholar
  50. Thione L (2000) Biologie de la reproduction et étude de l’impact de l’exploitation des feuilles et des fruits sur la productivité des rôniers Doctorat de 3eme cycle, l’Université Cheikh Anta Diop, Faculté des sciences et techniques, Département de Biologie Végétale, DakarGoogle Scholar
  51. Venter SM, Witkowski ET (2013) Using a deterministic population model to evaluate population stability and the effects of fruit harvesting and livestock on baobab (Adansonia digitata L.) populations in five land-use types. For Ecol Manag 303:113–120CrossRefGoogle Scholar
  52. Wheeler B, Torchiano M (2016) lmPerm: permutation tests for linear models. R package version 2.1.0Google Scholar
  53. White F (1986) La Vegetation de L’Afrique (The vegetation of Africa) vol 20. IRD EditionsGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Biomathématiques et d’Estimations ForestièresFaculté des Sciences Agronomiques, Université d’Abomey-CalaviCotonouBenin
  2. 2.Unité de Gestion des Ressources Forestières et des Milieux Naturels, Laboratoire de Foresterie des Régions Tropicales et SubtropicalesUniversité de Liège - Gembloux Agro-Bio TechGemblouxBelgium
  3. 3.Université Nationale d’AgricultureKétouBenin

Personalised recommendations