Effects of grazing exclusion and environmental conditions on the soil seed bank of a Mediterranean grazed oak wood pasture

Abstract

Large seed banks in the soils of Mediterranean wood pastures can allow the composition of the understorey vegetation to adapt to changing conditions such as under-grazing, grazing exclusion and climate change. This three year study investigated the effect of grazing exclusion on the transient and persistent seed banks of 23 areas of a Mediterranean wood pasture of Quercus suber L., Q. ilex L. and Q. pubescens Willd. A canonical correspondence analysis was used to determine the effect of topo-climatic (elevation, aspect, slope, rainfall, temperature, tree coverage), soil (pH, soil texture, and soil nitrogen, phosphorus, lime and organic carbon content) and biodiversity (Shannon index, species richness index, and Pastoral Value) variables on the soil seed bank under grazed and ungrazed conditions. The size of the persistent seed bank increased with rainfall, grazing, and the available phosphorus content of the soil. Specific site by site grazing regimes could increase the abundance of legumes in the soil seed bank and the species richness and diversity of the understorey vegetation. These results can help guide the conservation management of this silvopastoral area.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alrababah MA, Alhamad MA, Suwaileh A, Al-Gharaibeh M (2007) Biodiversity of semi-arid Mediterranean grasslands: impact of grazing and afforestation. Appl Veg Sci 10(2):257–264

    Article  Google Scholar 

  2. Arévalo JR, Chinea E (2009) Pastures seedbank composition in relation to soil nutrient content in areas under goat grazing management (Tenerife). J Food Agric Environ 7(3&4):710–716

    Google Scholar 

  3. Auld TD, Denham AJ (2006) How much seed remains in the soil after a fire? Plant Ecol 187(1):15–24

    Article  Google Scholar 

  4. Ball DA, Miller SD (1989) A comparison of techniques for estimation of arable soil seedbanks and their relationship to weed flora. Weed Res 29(5):365–373

    Article  Google Scholar 

  5. Baskin JM, Baskin CC, Li X (2000) Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biology 15:139–152

    Article  Google Scholar 

  6. Blondel J (2010) The Mediterranean region: biological diversity in space and time. Oxford University Press, New york

    Google Scholar 

  7. Boudell JA, Link SO, Johansen JR (2002) Effect of soil microtopography on seed bank distribution in the shrub-steppe. West North Am Natural 62(1):14–24

    Google Scholar 

  8. Brooks TM, Mittermeier RA, da Fonseca GA et al (2006) Global biodiversity conservation priorities. Science 313(5783):58–61

    Article  PubMed  CAS  Google Scholar 

  9. Carneiro JP, Simoes N, Macas ID, Tavares-de-Sousa M (2008) Pasture improvement in montado extensive farming system. In: Porqueddu C, Tavares-de-Sousa MM (eds) Sustainable Mediterranean grasslands and their multi-functions. options méditerranéennes, serie A: 79, centre international de hautes etudes agronomiques méditerranéennes (CIHEAM), Zaragoza, pp 193–197

  10. Cavallero A, Aceto P, Gorlier A, Lombardi G, Lonati M, Martinasso B, Tagliatori C (2007) I tipi pastorali delle alpi piemontesi. Alberto Perdisa Editore, Bologna

    Google Scholar 

  11. Daget Ph, Poissonet T (1969) Analyse phytologique des praisies. INRA, Montpellier Document 48:66

    Google Scholar 

  12. Davis FW, Goetz S (1990) Modeling vegetation pattern using digital terrain data. Landscape Ecol 4(1):69–80

    Article  Google Scholar 

  13. Delpech R (1960) Critères de jugement de la valeur agronomique des praires. Fourrages 4:83–98

    Google Scholar 

  14. Dhondt B, Brys R, Hoffmann M (2010) The incidence, field performance and heritability of non-dormant seeds in white clover (Trifolium repens L.). Seed Sci Res 20(3):169–177

    Article  Google Scholar 

  15. Franca A, Sanna F, Nieddu S, Re GA et al (2012) Effects of grazing on the traits of a potential fire in a sardinian wooded pasture. In: Acar Z, Lòpez-Francos A, Porqueddu C (eds) New approaches for grassaland research in a context of climate and socioeconomic changes. Zaragoza: CIHEAM/Ondokuz Mayis University 541: 307–311

  16. Franca A, Caredda S, Sanna F, Fava F, Seddaiu G (2016) Early plant community dynamics following overseeding for the rehabilitation of a Mediterranean silvopastoral system. Grassl Sci 2(62):81–91

    Article  Google Scholar 

  17. Goetz SJ, Wright RK, Smith AJ, Zinecker E, Schaub E (2003) IKONOS imagery for resource management: tree cover, impervious surfaces, and riparian buffer analyses in the mid-Atlantic region. Remote Sens Environ 88(2003):195–208

    Article  Google Scholar 

  18. Gusmeroli F, Della Marianna G, Fava F, Monteiro A, Bocchi S, Parolo G (2013) Effects of ecological, landscape and management factors on plant species composition, biodiversity and forage value in alpine meadows. Grass Forage Sci 68:437–447

    Article  Google Scholar 

  19. Hanke W, Böhner J, Dreber N, Jürgens N, Schmiedel U, Wesuls D, Dengler J (2014) The impact of livestock grazing on plant diversity: an analysis across dryland ecosystems and scales in southern Africa. Ecol Appl 24(5):1188–1203

    Article  PubMed  Google Scholar 

  20. Harman CJ, Lohse KA, Troch PA, Sivapalan M (2014) Spatial patterns of vegetation, soils, and microtopography from terrestrial laser scanning on two semiarid hillslopes of contrasting lithology. J Geophys Res Biogeosci 119:163–180

    Article  Google Scholar 

  21. Iannucci A (2014) Soil seed-bank germination patterns in natural pastures under different mineral fertilizer treatments. Span J Agric Res 12(4):1018–1028

    Article  Google Scholar 

  22. Kigel J (1995) Seed germination in arid and semiarid regions. Seed dev germination 1995:645–699

    Google Scholar 

  23. Kinloch JE, Friedel MH (2005) Soil seed reserves in arid grazing lands of central Australia. part 1: seed bank and vegetation dynamics. J Arid Environ 60(1):133–161

    Article  Google Scholar 

  24. Kinucan RJ, Smeins FE (1992) Soil seed bank of semi-arid Texas grassland under three long-term (36 years) grazing regimes. Ame Middle Nat 128:11–21

    Article  Google Scholar 

  25. Landsberg J, James CD, Maconochie J, Nicholls AO, Stol J, Tynan R (2002) Scale-related effects of grazing on native plant communities in an arid rangeland region of South Australia. J Appl Ecol 39(3):427–444

    Article  Google Scholar 

  26. Leck MA (1989). Wetland seed banks. Ecology of soil seed banks, p 283–305

  27. Lepš J, Šmilauer P (2003) Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press, Cambridge, pp 1–269

    Google Scholar 

  28. López-Mariño A, Luis-Calabuig Fillat E, Bermúdez FF (2009) Floristic composition of established vegetation and the soil seed bank in pasture communities under different traditional management regimes. Agric, Ecosyst Environ 78:273–282

    Article  Google Scholar 

  29. Madrigal J, García-Rodriguez JA, Roberto J, Puerto A, Fernández-Santos B (2008) Exploring the influence of shrubs on herbaceous communities in a Mediterranean climatic context of two spatial scales. Plant Ecol 195:225–234

    Article  Google Scholar 

  30. Marañon T, Bartolome JW (1993) Reciprocal transplants of herbaceous communities between Quercus agrifolia woodland and adjacent grassland. J Ecol 81(4):673

    Article  Google Scholar 

  31. McGrath GS, Paik K, Hinz C (2012) Microtopography alters self-organized vegetation patterns in water-limited ecosystems. J Geophys Res 117:G3

    Article  Google Scholar 

  32. Meissner RA, Facelli JM (1999) Effects of sheep exclusion on the soil seed bank and annual vegetation in chenopod shrublands of South Australia. J Arid Environ 42(2):117–128

    Article  Google Scholar 

  33. Moreno G, Franca A, Pinto-Correia T, Godinho S (2014) Multifunctionality and dynamics of silvopastoral systems. Options Méditerranéennes, Series A 109:421–436

    Google Scholar 

  34. O’Connor TG, Pickett GA (1992) The influence of grazing on seed production and seed bank of some African savanna grassland. J Appl Ecol 29:247–260

    Article  Google Scholar 

  35. Ooi KJ (2012) Seed bank persistence and climate change. Seed Science Research 22:S53–S60

    Article  Google Scholar 

  36. Perevolotsky A (2005) Integrating landscape ecology in the conservation of Mediterranean ecosystems: the Israeli experience. Israel J Plant Sci 53(3–4):203–213

    Article  Google Scholar 

  37. Perevolotsky A, Seligman NAG (1998) Role of grazing in Mediterranean rangeland ecosystems. Bioscience 48(12):1007–1017

    Article  Google Scholar 

  38. Perez CJ, Waller SS, Moser LE, Stubbendieck JL, Steuter AA (1998) Seedbank characteristics of a Nebraska sandhills praire. J Range Manag 51:55–62

    Article  Google Scholar 

  39. Pueyo Y, Alados CL (2007) Effects of fragmentation, abiotic factors and land use on vegetation recovery in a semi-arid Mediterranean area. Basic Appl Ecol 8:158–170

    Article  Google Scholar 

  40. Ramos ME, Robles AB, Gonzalez-Rebollar JL (2010) Ley-farming and seed dispersal by sheep: two methods for improving fallow pastures in semiarid Mediterranean environments? Agric Ecosyst Environ 137:124–132

    Article  Google Scholar 

  41. Rees M, Condit R, Crawley M, Pacala S, Tilman D (2001) Long-term studies of vegetation dynamics. Science 293:650–655

    Article  PubMed  CAS  Google Scholar 

  42. Roggero PP, Bagella S, Farina R (2002) Un archivio dati di Indici Specifici per la valutazione integrata del valore pastorale. Rivista di Agronomia 36(2):149–156

    Google Scholar 

  43. Rossetti I, Bagella S, Cappai C, Caria MC, Lai R et al (2015) Isolated cork oak trees affect soil properties and biodiversity in a Mediterranean wooded grassland. Agr Ecosyst Environ 202:203–216

    Article  Google Scholar 

  44. Russi L, Cocks PS, Roberts EH (1992) Seed bank dynamics in a Mediterranean grassland. J Appl Ecol 1992:763–771

    Article  Google Scholar 

  45. SardegnaARPA (2017), http://gis.sar.sardegna.it/gfmaplet/?map=carta_bioclimatica. Accessed 16 Feb 2017

  46. Seddaiu G, Porcu G, Ledda L, Roggero PP, Agnelli A, Corti G (2013) Soil organic matter content and composition as influenced by soil management in a semi-arid Mediterranean agro-silvo-pastoral system. Agr Ecosyst Environ 167:1–11

    Article  Google Scholar 

  47. Shannon CE (1948) A mathematical theory of communication. The Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  48. Smith DMS, McKeon GM, Watson IW, Henry BK, Stone GS, Hall WB, Howden SM (2007) Learning from episodes of degradation and recovery in variable Australian rangelands. Proc Natl Acad Sci 104(52):20690–20695

    Article  Google Scholar 

  49. Solomon TB, Snyman HA, Smit GN (2006) Soil seed bank characteristics in relation to land use systems and distance from water in a semi-arid rangeland of southern Ethiopia. S Afr J Bot 72(2):263–271

    Article  Google Scholar 

  50. Spasojevic MJ, Bowman WD, Humphries HC, Seastedt TR, Suding KN (2013) Changes in alpine vegetation over 21 years: are patterns across a heterogeneous landscape consistent with predictions? Ecosphere 4(9):1–18

    Article  Google Scholar 

  51. Sternberg M, Gutman M, Perevolotsky A, Kigel J (2003) Effects of grazing on soil seed bank dynamics: an approach with functional groups. J Veg Sci 14(3):375–386

    Article  Google Scholar 

  52. Sulas L, Franca A (2000) Caredda S (2000) Persistence and regeneration mechanisms in forage legumes. Cahiers Options Méditerranéennes 45:331–342

    Google Scholar 

  53. ter Braak CJF (1989) CANOCO—an extension of DECORANA to analyze species–environment relationships. Hydrobiologia 184:169–170

    Article  Google Scholar 

  54. Traba J, Azcárate FM, Peco B (2004) From what depth do seeds emerge? A soil seed bank experiment with Mediterranean grassland species. Seed Sci Res 14:297–303

    Article  Google Scholar 

  55. van Langevelde F, Tessema ZK, de Boer WF, Prins HH (2016) Soil seed bank dynamics under the influence of grazing as alternative explanation for herbaceous vegetation transitions in semi-arid rangelands. Ecol Model 337:253–261

    Article  Google Scholar 

  56. Vico G, Porporato A (2009) Probabilistic description of topographic slope and aspect. J Geophys Res. https://doi.org/10.1029/2008JF001038

    Article  Google Scholar 

  57. Westoby M, Walker B, Noy-Meir I (1989) Opportunistic management for rangelands not at equilibrium. J Range Manag 42(4):266–274

    Article  Google Scholar 

Download references

Acknowledgments

The AGFORWARD project (Grant Agreement No. 613520) is co-funded by the European Commission, Directorate General for Research & Innovation, within the 7th Framework Programme of RTD, Theme 2 - Biotechnologies, Agriculture & Food. We thank Giovanni Piras (Forestas Regional Agency) for providing topographic data, Bachisio Arca (CNR IBIMET) for the elaboration of tree coverage data and Giovanna Seddaiu (NRD UNISS) for the support to the statistical analysis. Also, we are grateful to Maddalena Sassu, Salvatore Nieddu, Piero Saba, Daniele Dettori and Daniele Nieddu (CNR ISPAAM) for their technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonello Franca.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Supplementary material 2 (XLSX 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Franca, A., Re, G.A. & Sanna, F. Effects of grazing exclusion and environmental conditions on the soil seed bank of a Mediterranean grazed oak wood pasture. Agroforest Syst 92, 909–919 (2018). https://doi.org/10.1007/s10457-018-0203-0

Download citation

Keywords

  • Silvopastoral system
  • Grazed gaps
  • Grassland communities
  • Topography
  • Soil properties
  • Biodiversity