Evaluation of wood properties of four ages of Cedrela odorata trees growing in agroforestry systems with Theobroma cacao in Costa Rica

Abstract

The present work studies the morphological, physical, mechanical and chemical properties, decay resistance, preservation and workability of Cedrela odorata wood from trees growing in agroforestry systems with Theobroma cacao at four ages (4-, 5-, 6- and 7-years-old) in Costa Rica. It was found that the morphological properties (heartwood, pith and bark), together with the physical properties (specific gravity, green density, shrinkage and green moisture content) presented few differences at the four ages. The wood from 4-years-old trees was the only exception, showing less resistance in compression, flexion and lateral hardness. The content of lignin, carbon, and extractives in hot water were not affected among the different ages, contrary to the rest of chemical properties. In relation to decay resistance in accelerated tests with the fungus Trametes versicolor, the wood is classified as highly resistant, while with the fungus Lencites acuta it is classified as moderately resistant. As concerns properties related to industrialization, it was found that the wood can be preserved through vacuum-pressure methods obtaining similar results as those from other plantation timbers. As for workability tests, the wood from the 4-years-old trees show acceptable to very poor performance, differing from trees from the other ages.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Andrés P, Salgado C, Espelta JM (2011) Optimizing nursery and plantation methods to grow Cedrela odorata seedlings in tropical dry agroecosystems. Agrofor Syst 83:225–234

    Article  Google Scholar 

  2. ASTM (American Society for Testing and Materials, USA) (2005) D2017-05. Standard Test Method of accelerated laboratory test of natural decay resistance of woods. ASTM International, West Conshohocken

  3. ASTM (American Society for Testing and Materials, USA) (2013a) D1110-84. Standard test methods for water solubility of wood. ASTM International, West Conshohocken

  4. ASTM (American Society for Testing and Materials, USA) (2013b) D1109-84. Standard test method for 1% sodium hydroxide solubility of wood. ASTM International, West Conshohocken

  5. ASTM (American Society for Testing and Materials, USA) (2013c) D1108-96. Standard test method for dichloromethane soluble in wood. ASTM International, West Conshohocken

  6. ASTM (American Society for Testing and Materials, USA) (2013d) D1107-96. Standard test method for ethanol-toluene solubility of wood. ASTM International, West Conshohocken

  7. ASTM (American Society for Testing and Materials, USA) (2014a) D2395-14. Standard test method for density and specific gravity (relative density) of wood and wood based materials. West Conshohocken

  8. ASTM (American Society for Testing and Materials, USA) (2014b) D143-14. Standard test method for small clear specimens of timber. ASTM International, West Conshohocken

  9. Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164

    Article  Google Scholar 

  10. Benitez R, Montesinos JL (1988) Catálogo de cien especies forestales de Honduras: Distribución, propiedades y usos. Escuela Nacional de Ciencias Forestales (ESNACIFOR). Siguatepeque, Honduras

  11. Berrocal A, Rodriguez-Zuniga A, Veja-Baudrit J, Noguera SC (2014) Effect of silver nanoparticles on white-rot wood decay and some physical properties of three tropical wood species. Wood Fiber Sci 46(4):527–538

    Google Scholar 

  12. De Sousa KF, Detlefsen G, de Melo Virginio Filho E, Tobar D, Casanoves F (2016) Timber yield from smallholder agroforestry systems in Nicaragua and Honduras. Agrofor Syst 90(2):207–218

    Article  Google Scholar 

  13. Dünisch O, Bauch J, Gasparotto L (2002) Formation of increment zones and intraannual growth dynamics in the xylem of Swietenia macrophylla, Carapa guianensis, and Cedrela odorata (Meliaceae). IAWA J 23(2):101–119

    Article  Google Scholar 

  14. Dünisch O, Montóia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees 17(3):244–250

    Google Scholar 

  15. Gillies ACM, Cornelius JP, Newton AC, Navarro C, Hernández M, Wilson J (1997) Genetic variation in Costa Rican populations of the tropical timber species Cedrela odorata L., assessed using RAPDs. Mol Ecol 6:1133–1145

    Article  CAS  Google Scholar 

  16. Glencross K, Nichols JD, Leimon Kalomor L, Sethy M (2013) Growth and wood properties of terminalia catappa from agroforestry systems in Vanuatu. Final report number FR2013-31. 36 p. Australian Centre for International Agricultural Research—ACIAR ABN 34 864 955 427

  17. Gramlich A, Tandy S, Andres C, Paniagua JC, Armengot L, Schneider M, Schulin R (2017) Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Sci Total Environ 580:677–686

    Article  CAS  PubMed  Google Scholar 

  18. Hillis WE (1971) Distribution, properties and formation of some wood extractives. Wood Sci Technol 5(4):272–289

    Article  CAS  Google Scholar 

  19. Jagoret P, Michel I, Ngnogué HT, Lachenaud P, Snoeck D, Malézieux E (2017) Structural characteristics determine productivity in complex cocoa agroforestry systems. Agron Sustain Dev 37(6):60

    Article  Google Scholar 

  20. Jaimez RE, Araque O, Guzman D, Mora A, Espinoza W, Tezara W (2013) Agroforestry systems of timber species and cacao: survival and growth during the early stages. J Agri Rural Dev Trop Subtrop 114(1):1–11

    Google Scholar 

  21. Keenan FJ, Tejeda M (1988) Tropical timber for building materials in the Andean Group countries of South America. IDCR-TS49e. International Development Research Institute, Ottawa

  22. Kokutse AD, Baillères H, Stokes A, Kokou K (2004) Proportion and quality of heartwood in Togolese teak (Tectona grandis L.f.). For Ecol Manag 189(1–3):37–48

    Article  Google Scholar 

  23. Kouakou SS, Marchal R, Brancheriau L, Guyot A, Guibal D (2016) The quality of poplar wood from agroforestry: a comparison with forest plantation. In: Gosme M (ed) 3rd European agroforestry conference. Montpellier, France, 23–25 May 2016, pp 274–276. Available in https://agritrop.cirad.fr/580654/1/ID580654%20.pdf

  24. Longwood FR (1962) Present and potential commercial timbers of the Caribbean. Agriculture Handbook No. 207. Forest Service, U.S. Department of Agriculture. Washington DC

  25. Martínez-Castillo JL, Martínez-Pinillos E (1996) Características de maquinado de 32 especies de madera. Madera y Bosques 2(1):45–62

    Article  Google Scholar 

  26. Méndez VE, Lok R, Somarriba E (2001) Interdisciplinaryanalysis of homegardens in Nicaragua: micro-zonation, plant use and socioeconomic importance. Agrofor Syst 51:85–96

    Article  Google Scholar 

  27. Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61(1–3):281–295

    Google Scholar 

  28. Moya R, Muñoz F (2010) Physical and mechanical properties of eight species from fast-growth plantation in Costa Rica. J Trop For Sci 22(3):317–328

    Google Scholar 

  29. Moya R, Tenorio C (2013) Fuelwood characteristics and its relation with extractives and chemical properties of ten fast-growth species in Costa Rica. Biomass Bioenergy 56:14–21

    Article  CAS  Google Scholar 

  30. Moya R, Valenzuela L, Salazar F (2002) Efecto de la fertilización de la pradera sobre la densidad básica de Pinus radiata. D. Don. Rev Invest Agrar 11(2):182–192

    Google Scholar 

  31. Moya R, Araya L, Vilchez B (2008) Variation in the pith parameter of Gmelina arborea trees from fast growth plantations in Costa Rica. Ann For Sci 65(6):612–621

    Article  Google Scholar 

  32. Moya R, Salas C, Berrocal A, Valverde JC (2015) Evaluation of chemical compositions, air-dry, preservation and workability of eight fast-growing plantation species in Costa Rica. Maderas y Bosques 21:31–47

    Google Scholar 

  33. Moya R, Rodriguez-Zuñiga A, Berrocal A, Vega-Baudrit J (2017a) Effect of silver nanoparticles synthesized with NPsAg-ethylene glycol (C2H6O2) on brown decay and white decay fungi of nine tropical woods. J Nanosci Nanotechnol 17(8):5233–5240

    Article  CAS  Google Scholar 

  34. Moya R, Rodriguez-Zuñiga A, Puente-Urbina A (2017b) Thermogravimetric and devolatilisation analysis for five plantation species: effect of extractives, ash compositions, chemical compositions and energy parameters. Thermochim Acta 647(10):36–48

    Article  CAS  Google Scholar 

  35. Muñoz F, Moya R (2008) Moisture content variability in kiln-dried Gmelina arborea: effect of radial position and anatomical features. J Wood Sci 54(4):318–322

    Article  Google Scholar 

  36. Navarro C, Ward S, Hernandez M (2002) The tree Cedrela odorata (Meliaceae): a morphologically subdivided species in Costa Rica. Rev Biol Trop 50(1):21–29

    PubMed  Google Scholar 

  37. Navarro C, Montagnini F, Hernández G (2004) Genetic variability of Cedrela odorata Linnaeus: results of early performance of provenances and families from Mesoamerica grown in association with coffee. For Ecol Manag 192(2):217–227

    Article  Google Scholar 

  38. Paine CET, Stahl C, Courtois EA, Patino S, Sarmiento C, Baraloto C (2010) Functional explanations for variation in bark thickness in tropical rain forest trees. Funct Ecol 24:1202–1210

    Article  Google Scholar 

  39. Pereira H, Graca J, Rodriguez JC (2003) Wood chemistry in relation to quality. In: Barnett JG, Eronimidis J (eds) Wood quality and its biological basis. Blackwell Publishing, London, pp 3–40

    Google Scholar 

  40. Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127(4):1513–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reza-Taghiyari H, Efhami-Sisi D (2012) The effects of tree-alfalfa intercropped systems on wood quality in temperate regions. In: Kaonga M (ed) Agroforestry for biodiversity and ecosystem services: science and practice. InTech. http://www.intechopen.com/books/agroforestry-for-biodiversity-and-ecosystem-services-science-andpractice/the-effects-of-agroforestry-practices-on-wood-quality

  42. Roffael E (2016) Significance of wood extractives for wood bonding. Appl Microbiol Biotechnol 100:1589–1596

    Article  CAS  PubMed  Google Scholar 

  43. Rosales-Castro M, Honorato-Salazar JA, Santos-García AB, Pérez-López ME, Colotl-Hernandez G, Sánchez-Monsalvo V (2016) Chemical composition of leaves and branches of Cedrela odorata L. from two forest plantations as a source of lignocellulosic feedstock. Madera y Bosques 22(2):131–146

    Article  Google Scholar 

  44. Shanavas A, Kumar BM (2006) Physical and mechanical properties of three agroforestry tree species from Kerala, India. J Trop Agric 44(1–2):23–30

    Google Scholar 

  45. Shukla SR, Viswanath S (2014) Comparative study on growth, wood quality and financial returns of teak (Tectona grandis L.f.) managed under three different agroforestry practices. Agrofor Syst 88:331–341

    Article  Google Scholar 

  46. Somarriba E, Beer J (2011) Productivity of Theobroma cacao agroforestry systems with timber or legume service shade trees. Agrofor Syst 81:109–121

    Article  Google Scholar 

  47. Somarriba E, Cerda R, Orozco L, Cifuentes M, Dávila H, Espinoza T, Astorga C (2013) Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric Ecosyst Environ 173:46–57

    Article  Google Scholar 

  48. Somarriba E, Suárez-Islas A, Calero-Borge W, Villota A, Castillo C, Vílchez S, Deheuvels O, Cerda R (2014) Cocoa–timber agroforestry systems: theobroma cacaoCordia alliodora in Central America. Agrofor Syst 88:1001–1019

    Article  Google Scholar 

  49. Suárez PE, Honorato SJ (2014) Determinación del contenido de extractos de la madera y corteza de tres genotipos de Cedrela odorata. XXVI Reunión Científica Tecnológica, Forestal y Agropecuaria Tabasco 2014, 603. México

  50. Taylor AM, Gartner BL, Morrell JJ (2002) Heartwood formation and natural durability: a review. Wood Fiber Sci 34:587–611

    CAS  Google Scholar 

  51. Telmo C, Lousada J (2011) The explained variation by lignin and extractive contents on higher heating value of wood. Biomass Bioener 35:1663–1667

    Article  CAS  Google Scholar 

  52. Tenorio C, Moya R (2011) Kiln drying of Acacia mangium Willd wood: considerations of moisture content before and after drying and presence of wet pockets. Dry Technol 29:1845–1854

    Article  CAS  Google Scholar 

  53. Tenorio C, Moya R, Salas C, Berrocal A (2016a) Evaluation of wood properties from six native species of forest plantations in Costa Rica. Revista Bosques 37(1):71–84

    Article  Google Scholar 

  54. Tenorio C, Moya R, Salas C (2016b) Kiln drying behavior utilizing drying rate of lumber from six fast-growth plantation species in Costa Rica. Dry Technol 34:443–454

    Article  CAS  Google Scholar 

  55. Timell TE (1986) Compression wood in gymnosperms, vol 1–3. Springer, Berlin, p 425

    Book  Google Scholar 

  56. Torelli N, Čufar K (1996) Mexican tropical hardwoods: machinability, nailing and screwing. Eur J Wood Wood Prod 54:69–71

    Article  Google Scholar 

  57. Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Scherber C (2011) Multifunctional shade-tree management in tropical agroforestry landscapes: a review. J Appl Ecol 48:619–629

    Article  Google Scholar 

  58. West PW (2014) Growth rates and wood quality. Growing plantation forests. Springer, Cham

    Book  Google Scholar 

  59. Wilson BG, Witkowski ETF (2003) Seed banks, bark thickness and change in age and size structure (1978–1999) of the African savanna tree, Burkea africana. Plant Ecol 167:151–162

    Article  Google Scholar 

  60. Yang KC, Chen YS, Chiu C, Hazenberg G (1994) Formation and vertical distribution of sapwood and heartwood in Cryptomeria japonica D. Don. Trees 9:35–40

    Article  CAS  Google Scholar 

  61. Yeboah D, Burton AJ, Storer AJ, Opuni-Frimpong E (2014) Variation in wood density and carbon content of tropical plantation tree species from Ghana. New For 45:35–52

    Article  Google Scholar 

  62. Zobel BJ, Van Buijtenen JP (2012) Wood variation: its causes and control. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the Vicerrectoría de Investigación y Extensión of the Instituto Tecnológico de Costa Rica and also of Hacienda Azul S.A., who contributed the materials for this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roger Moya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tenorio, C., Moya, R. Evaluation of wood properties of four ages of Cedrela odorata trees growing in agroforestry systems with Theobroma cacao in Costa Rica. Agroforest Syst 93, 973–988 (2019). https://doi.org/10.1007/s10457-018-0194-x

Download citation

Keywords

  • Tropical wood
  • Wood cedar
  • Cedro amargo
  • Growth rate
  • Farmer tree