Advertisement

Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants

  • Yamel del Carmen Perea Rojas
  • Rosa María Arias
  • Rosario Medel Ortiz
  • Dora Trejo Aguilar
  • Gabriela Heredia
  • Yakelin Rodríguez Yon
Article

Abstract

The effects of the interaction between arbuscular mycorrhizal and phosphate-solubilizing (P-solubilizing) fungi on phosphorous availability, acid phosphatase activity, and the growth and development of coffee plants (Coffea arabica L.) var. garnica were evaluated. The experiment was performed under controlled conditions and was based on a randomized factorial design with two factors. Coffee plants were inoculated with a consortium of arbuscular mycorrhizal fungi (CAMF), two strains of P-solubilizing fungi (PSF) (Aspergillus niger [An] and Penicillium brevicompactum [Pb]), the possible combinations of the latter fungi, and an uninoculated control. After 8 months, the results demonstrated the effectiveness of mycorrhizal and P-solubilizing fungal inoculations in increasing available soil phosphorous. The greatest concentration of available soil phosphorous was detected in the consortium of P-solubilizing fungi (CPSF) treatment at 3.8 mg/kg. The total foliar phosphorous concentration of plants was higher in the CAMF, An + CAMF, CPSF + CAMF, Pb + CAMF, and CPSF treatments in comparison to the control treatment. The growth of coffee plants was also favored by the consortium treatments (P-solubilizing fungi and arbuscular mycorrhizal fungi). The acid phosphatase activity in the rhizosphere significantly increased under the CPSF treatment and also increased in the roots of coffee plants under the An, An + CAMF, and CPSF + CAMF treatments. Given the importance of fungal groups for processes of phosphorous transformation and absorption in coffee plants, it is imperative to continue the search for native fungal strains with high potential for use as biofertilizers.

Keywords

Aspegillus niger Penicillium brevicompactum Bio-fertilization Phosphorus Phosphatases Soil fungi 

Notes

Acknowledgements

This study was part of the CONACyT (C01-0194) project, “Aplicación de las interacciones fúngicas en la restauración y fertilización del suelo” (2011/169124) carried out at the Instituto de Ecología, A.C. The first author thanks CONACyT for her master fellowship at the Instituto de Investigaciones Forestales, Universidad Veracruzana. We thank Biol. Miriam Lagunes Reyes, Noemí Orozco Domínguez, and Ing. Abraham Romero Fernández for their valuable support in processing samples. We also thank MGR Ariadna Martínez Virues for assistance with the chemical analyses. Allison Marie Jermain revised the English version of the manuscript.

References

  1. Adriano AML, Hernández RC, Figueroa MS, Jarquin Gálvez R (2011) Actividad biológica y enzimas de estrés en plántulas de café Coffea arabica L. In: Aguilar JCE, Galdámez J, Bahena JF, Vázquez GM, López BW, Pinto RR (eds) Agricultura Sostenible Vol. V. Sociedad Mexicana de Agricultura Sostenible A.C., Mexico, pp 15–20Google Scholar
  2. Agnihotri VP (1970) Solubilization of insoluble phosphates by some soil fungi isolated from nursery seedbeds. Can J Microbiol 16(9):877–880CrossRefPubMedGoogle Scholar
  3. Aguirre MJF, Moroyoqui ODM, Mendoza LA, Cadena IJ, Avendaño ACH, Aguirre CJF (2011) Hongo endomicorrízico y bacteria fijadora de nitrógeno inoculadas a Coffea arabica en vivero. Agron Mesoam 22(1):71–80CrossRefGoogle Scholar
  4. Arias RM, Heredia G (2014) Fungal diversity in coffee plantation systems and in a tropical montane cloud forest in Veracruz, Mexico. Agrofor Syst 88(5):921–933CrossRefGoogle Scholar
  5. Arias RM, Heredia G, Sosa V, Fuentes-Ramírez LE (2012) Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico. Agrofor Syst 85(1):179–193CrossRefGoogle Scholar
  6. Babu A, Reddy M (2011) Dual inoculation of arbuscular mycorrhizal and phosphate solubilizing fungi contributes in sustainable maintenance of plant health in fly ash ponds. Water Air Soil Pollut 219(1–4):3–10CrossRefGoogle Scholar
  7. Barea JM, Ferrol N, Azcón C, Azcón R (2008) Mycorrhizal symbioses. In: White PJ, Hammond JP (eds) The ecophysiology of plant–phosphorus interactions. Springer, Dordrecht, pp 143–163CrossRefGoogle Scholar
  8. Bray RH, Kurtz LT (1945) Determination of total, organic and available forms of phosphorus in soil. Soil Sci 59:39–45CrossRefGoogle Scholar
  9. Carvajal JF (1984) Cafeto—cultivo y fertilización. Instituto Internacional de la Potassa, BernaGoogle Scholar
  10. Castillo C, Morales A, Rubio R, Barea JM, Borie F (2013) Interactions between native arbuscular mycorrhizal fungi and phosphate solubilizing fungi and thier effect to improve plant development and fruit production by Capsicum annuum L. Afr J Microbiol Res 7(26):3331–3340CrossRefGoogle Scholar
  11. Collados C (2006) Impacto de Azospirillum modificado genéticamente sobre la diversidad y actividad de los hongos de la micorriza arbuscular en la rizósfera de trigo y maíz. Dissertation, Universidad de GranadaGoogle Scholar
  12. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245(1):35–47CrossRefGoogle Scholar
  13. Davis BJ (1964) Disc electrophoresis. II. Method and application to human serum proteins. Annu N Y Acad Sci 121:404–427CrossRefGoogle Scholar
  14. Dighton J (1991) Acquisition of nutrients from organic sources by mycorrhizal autotrophics plants. Experientia 47:362–369CrossRefGoogle Scholar
  15. Domínguez VA (1997) Tratado de fertilización. Mundi-Prensa, MadridGoogle Scholar
  16. Escalona MA (2002) Interacción de plantas de café fertilizadas con fósforo e inoculadas con hongos micorrízico arbusculares y Phoma costarricencis Echandi. Dissertation, Universidad de ColimaGoogle Scholar
  17. Escamilla PE, Ruiz RO, Zamarripa CA, González HVA (2015) Calidad en variedades de café orgánico en tres regiones de México. Rev Geog Agric 55:45Google Scholar
  18. Fira (2016) Panorama Agroalimentario. Café 2016. Dirección de Investigación y Evaluación Económica y SectorialGoogle Scholar
  19. García-Franco J, Toledo T (2008) Epífitas vasculares: bromelias y orquídeas. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INE-SEMARNAT), Mexico, pp 69–77Google Scholar
  20. González ME, Rodriguez Y (2004) Respuesta de plantas de Coffea canephora a la inoculación con hongos micorrizógenos arbusculares durante la fase de aclimatización. Cultiv Trop 25(1):13–16Google Scholar
  21. González-Romero A, Murrieta-Galindo R (2008) Anfibios y Reptiles. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INE-SEMARNAT), Mexico, pp 135–143Google Scholar
  22. Grimal JY, Frossard E, Morel JL (2001) Maize root mucilage decreased adsorption of phosphate on goethite. Biol Fertilil Soils 33:226–230CrossRefGoogle Scholar
  23. Gryndler M, Vosatka M, Hrselova H, Chvatalova I, Jansa J (2002) Interaction between arbuscular mycorrhizal fungi and cellulose in growth substrate. Appl Soil Ecol 19(3):279–288CrossRefGoogle Scholar
  24. Heredia G, Arias R (2008) Hongos saprobios y endomicorrizógenos en suelos. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INE-SEMARNAT), Mexico, pp 193–203Google Scholar
  25. Jeffries P, Barea JM (2001) Arbuscular Mycorrhiza—a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The Mycota, vol IX. Fungal associations. Springer, Berlin, pp 95–113Google Scholar
  26. Joner EJ, Johansen A (2000) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol Res 104:81–86CrossRefGoogle Scholar
  27. Juma NG, Tabatabai MA (1988) Phosphatase activity in corn and soybean roots: conditions for assay and effects of metals. Plant Soil 107:39–47CrossRefGoogle Scholar
  28. Khan MS, Zaidi A (2006) Influence of composite inoculations of phosphate solubilizing organisms and an arbuscular mycorrhizal fungus on yield, grain protein and phosphorus and nitrogen uptake by greengram. Arch Agron Soil Sci 52(5):579–590CrossRefGoogle Scholar
  29. Kormanik PP, McGraw AC (1982) Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, Minnesota, pp 37–45Google Scholar
  30. Kroehler C (1988) The effects of organic and inorganic phosphorus concentration on the acid phosphatase activity of ectomycorrhizal fungi. Can J Bot 66:750–756CrossRefGoogle Scholar
  31. Kropp BR (1990) Variation in acid phosphatase activity among progeny from controlled crosses in the ectomycorrhizal fungus Lacaria bicolor. Can J Bot 68:864–866CrossRefGoogle Scholar
  32. Londoño A (2010) Efecto de la inoculación con un hongo micorrizal y un hongo solubilizador de fósforo en la absorción de fosfato y crecimiento de Leucaena leucocephala en un oxisol. Dissertation, Universidad Nacional de ColombiaGoogle Scholar
  33. Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (2008) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INE-SEMARNAT), MexicoGoogle Scholar
  34. Mariscal E, Anzueto F, García A, Molina A (1997) Evaluación del efecto de las micorrizas en almácigos de café. Memorias del XVIII Simposio Latinoamericano de Café (IICA, ICAFE). http://www.anacafe.org/glifos/index.php?title=Efecto_micorrizas_almacigos. Accessed 17 March 2016
  35. McAllister C, Garcia-Romera I, Martín J, Godeas A, Ocampo J (1995) Interaction between Aspergillus niger van Tiegh. and Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe. New Phytol 129:309–316CrossRefGoogle Scholar
  36. McKean SJ (1993) Manual de análisis de suelos y tejido vegetal: una guía teórica y práctica de metodologías. Cent Int Agric Trop 129:1–99Google Scholar
  37. Mehltreter K (2008) Helechos. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: Biodiversidad, Manejo y Conservación. Instituto de Ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INE-SEMARNAT), Mexico, pp 83–93Google Scholar
  38. Moguel P, Toledo VM (2004) Conservar produciendo: biodiversidad, café orgánico y jardines productivos. Biodiversitas 55:2–7Google Scholar
  39. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  40. Pérez E (2010) Hongos micorrízicos arbusculares (HMA) para la bioprotección de patógenos en el cultivo del tomate (Solanum lycopersicum L.). Dissertation, Universidad de la HabanaGoogle Scholar
  41. Phillips JM, Hayman DS (1970) Improved procedures for cleaning roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment to infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  42. Pohlan J (2002) México y la cafeticultura chiapaneca. Reflexiones y alternativas para los caficultores. Shaker Verlag, AlemaniaGoogle Scholar
  43. Relwani L, Krishna P, Reddy MS (2008) Effect of carbon and nitrogen sources on phosphate solubilization by a wild-type strain and UV-induced mutants of Aspergillus tubingensis. Curr Microbiol 57:401–440CrossRefPubMedGoogle Scholar
  44. Ridge EH, Rovira AD (1971) Phosphatase activity of intact young wheat roots under sterile and non-sterile conditions. New Phytol 70:1017–1026CrossRefGoogle Scholar
  45. Rivera R, Fernández F, Sánchez C, Bustamante C, Herrera R, Ochoa M (1997) Efecto de la inoculación con hongos micorrizógenos VA y bacterias rizosféricas sobre el crecimiento de las posturas de cafeto. Cultiv Trop 18(3):15–23Google Scholar
  46. Rodrigues-Cabral JS, De Assis KC, Silva FG, Souchie EL, Carneiro MAC (2012) Seedlings of cashew trees of the Brazilian Cerrado inoculated with arbuscular mycorrhizal fungi and phosphate-solubilizing microorganisms. Agrociencia 46(8):809–821Google Scholar
  47. Rodríguez MJL (2001) Efecto del biofertilizante Mycoral® (micorriza arbuscular) en el desarrollo del café (Coffea arabica L.) en vivero en Zamorano, Honduras. Dissertation, Escuela Agrícola PanamericanaGoogle Scholar
  48. Rodríguez Y, Vierheilig H, Mazorra LM (2012) Alterations of the antioxidant enzyme activities are not general characteristics of the colonization process by arbuscular mycorrhizal fungi. Chil J Agric Res 72(3):411CrossRefGoogle Scholar
  49. Roozen N, VanderHoff F (2002) La aventura del comercio justo. Una alternativa de globalización por los fundadores de Max Havelaar. El Atajo, MéxicoGoogle Scholar
  50. Saxena J, Saini A, Ravi I, Chandra S, Garg V (2015) Consortium of phosphate solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum). J Crop Improv 29:353–369CrossRefGoogle Scholar
  51. Serna GLS (2013) Efecto de la inoculación conjunta con hongos micorrizales y microorganismos solubilizadores de fósforo en plantas de aguacate. Dissertation, Universidad Nacional de ColombiaGoogle Scholar
  52. Sharma AK, Johri BN (2002) Physiology of nutrient uptake by arbuscular mycorrhizal fungi. In: Sharma AK, Johri BN (eds) Arbuscular mycorrhizae. Interaction in plants, rhizosphere and soils. Science Publishers, Enfield, pp 279–308Google Scholar
  53. Shaykh MN, Robertsm LW (1974) A histochemical study of phosphatase in root apical meristems. Ann Bot 38:165–174CrossRefGoogle Scholar
  54. Sosa ML, Escamilla PE, Díaz CS (2004) Organic coffee. In: Wintgens JE (ed) Coffee: growing, processing, sustainable production. Wiley-VCG Verlag GmbH & Co., Weinheim, pp 339–354CrossRefGoogle Scholar
  55. Sosa V, Hernández-Salazar, Hernández-Conrique, Castro-Luna A (2008) Murciélagos. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: Biodiversidad, Manejo y Conservación. Instituto de Ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INE-SEMARNAT), Mexico, pp 181–191Google Scholar
  56. Souchie EL, Azcón R, Barea JM, Saggin-Júnior OJ, Silva EMRD (2006) Phosphate solubilization and synergism between P-solubilizing and arbuscular mycorrhizal fungi. Pesqui Agropecu Bras 41(9):1405–1411CrossRefGoogle Scholar
  57. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307CrossRefGoogle Scholar
  58. Tadano T, Sakai H (1991) Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions. Soil Sci Plant Nutr 37:129–140CrossRefGoogle Scholar
  59. Tarafdar JC, Chhonkar PK (1978) Status of phophatases in the root-soil interface of leguminous and non-leguminous crops. Z Pflanzenernäh Bodenkd 141(3):347–351CrossRefGoogle Scholar
  60. Tarafdar JC, Classen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatase produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312CrossRefGoogle Scholar
  61. Tejeda-Cruz, Gordon C (2008) Aves. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. instituto de ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INE-SEMARNAT), Mexico, pp 149–160Google Scholar
  62. Trejo D, Ferrera-Cerrato R, García R, Valera L, Lara L, Alarcón A (2011) Efectividad de siete consorcios naticos de hongos micorrízicos arbusculares en plantas de café en condiciones de invernadero y campo. Rev Chil Hist Nat 84:23–31CrossRefGoogle Scholar
  63. Trouvelot A (1986) Mesure du taux de mycorhization VA d’un systemeradiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. Mycorrhizae: physiology and genetics, pp 217–221Google Scholar
  64. Valenzuela-González, Quiroz-Robledo L, Martínez-Tapia D (2008) Hormigas (Insecta: Hymenoptera: Formicidae). In: Manson RH, Hernandez-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INESEMARNAT), Mexico, pp 107–121Google Scholar
  65. Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310CrossRefPubMedGoogle Scholar
  66. Velázquez M, Elíades L, Irrazabal G, Saparrat C, Cabello M (2005) Mycobization with Glomus mosseae and Aspergillus niger in Lycopersicon esculentum plants. J Agric Technol 1(2):315–326Google Scholar
  67. Zhang HS, Qin FF, Qin P, Pan SM (2014) Evidence that arbuscular mycorrhizal and phosphate-solubilizing fungi alleviate NaCl stress in the halophyte Kosteletzkya virginica: nutrient uptake and ion distribution within root tissues. Mycorrhiza 24(5):383–395CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Yamel del Carmen Perea Rojas
    • 1
  • Rosa María Arias
    • 2
  • Rosario Medel Ortiz
    • 1
  • Dora Trejo Aguilar
    • 3
  • Gabriela Heredia
    • 2
  • Yakelin Rodríguez Yon
    • 4
  1. 1.Instituto de Investigaciones Forestales, Universidad VeracruzanaXalapaMexico
  2. 2.Instituto de EcologíaXalapaMexico
  3. 3.Facultad de Ciencias Agrícolas, Universidad VeracruzanaXalapaMexico
  4. 4.Instituto Nacional de Ciencias Agrícolas (INCA)San José de las LajasCuba

Personalised recommendations