Skip to main content

Advertisement

Log in

CH4, CO2 and N2O emissions from grasslands and bovine excreta in two intensive tropical dairy production systems

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The production of beef and milk has a significant impact on climate change, as these activities are responsible for a large proportion of the greenhouse gases emitted in agriculture. We used the static closed chamber technique to measure the rate of CH4-C, N2O-N and CO2-C emissions from pastures (102 days) and bovine excretions (27 days) in an intensive pasture monoculture (PM) and an intensive silvopastoral system (ISS) in the Cauca Valley of Colombia. Mean soil CO2-C (mg m2 h−1), CH4-C and N2O-N emissions (μg m−2 h−1) were 236.7 versus 113.4; 46.7 versus 1.01 and 344.7 versus 40.1 for the PM and ISS, respectively. The accumulated flows for PM and ISS during the evaluation period were 751.6 and 424.3; 4.39 and − 0.41; and 12.75 and 1.55 (kg ha−1) for CO2-C, CH4-C and N2O-N, respectively. Regarding manure, the PM had lower CO2-C and CH4-C emissions (498.6 vs. 981.2 mg m−2 h−1, and 1.9 vs. 4.7 μg m2 h−1; p > 0.05), and higher N2O-N emissions (2967.3 vs. 1179.8 μg m−2 h−1; p = 0.02) than the ISS, respectively. For the urine patches, the ISS emitted only 47.9, 2.2 and 11.6% of the CO2-C, CH4-C and N2O-N emissions observed in the PM, respectively. Moreover, comparing both systems with a forest, CH4-C and N2O-N emissions from the ISS were not different (p > 0.05), but the PM presented higher emissions for the three gases (p < 0.0001). The emissions reported in the present study differ from the emission factors suggested by the IPCC and other authors for manure and urine. PM presented higher N losses than the ISS from both manure (1.77 vs. 1.37%) and urine (3.47 vs. 0.3%) (p < 0.05). The ISS might contribute to the reduction of GHG emissions from grasslands in contrast to traditional grazing systems, despite the high stocking rates and legume densities, producing emissions similar to those of a forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen AG, Jarvis SC, Headon DM (1996) Nitrous oxide emissions from soils due to inputs of nitrogen from excreta return by livestock on grazed grassland in the UK. Soil Biol Biochem 28:597–607

    Article  CAS  Google Scholar 

  • Alves BJ, Smith R, Flores KA, Carodoso RA, Olivera AS, Jantalia WRD, Urquiaga PC, Boddey RM (2012) Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biol Biochem 46:129–135

    Article  CAS  Google Scholar 

  • Berger L (2011) Emisiones de Óxido nitroso producidas por la actividad ganadera en el Uruguay en condiciones de pastoreo. Informe de pasantía, Facultad de Ciencias, Universidad de la República, Montevideo

    Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19:1325–1346

    Article  PubMed  Google Scholar 

  • Bueno L, Camargo JC (2015) Edaphic nitrogen and nodulation of Leucaena leucocephala (Lam.) de Wit in silvopastoral systems. Acta Agron 4(4):349–354

    Google Scholar 

  • Burchill W, Li D, Lanigan GJ, Williams M, Humphreys J (2014) Inter-annual variation in nitrous oxide emissions from perennial ryegrass/white clover grassland used for dairy production. Glob Chang Biol 20(10):3137–3146

    Article  PubMed  PubMed Central  Google Scholar 

  • Burt R (2004) Soil survey laboratory methods manual version 4. USDA-NRCS, Nebraska

    Google Scholar 

  • Calle Z, Murgueitio E, Chará J (2012) Integrating forestry, sustainable cattle-ranching and landscape restoration. Unasylva 63:31–40

    Google Scholar 

  • Calle Z, Murgueitio E, Chará J, Molina CH, Zuluaga AF, Calle A (2013) A strategy for scaling up intensive silvopastoral systems in Colombia. Sustain For 32:677–693

    Article  Google Scholar 

  • Cardenas LM, Chadwick D, Scholefield D, Fychan R, Marley CL, Jones R, Bol R, Well R, Vallejo A (2007) The effect of diet manipulation on nitrous oxide and methane emissions from manure application to incubated grassland soils. Atmos Environ 41:7096–7107

    Article  CAS  Google Scholar 

  • Chará J, Camargo JC, Calle Z, Bueno L, Murgueitio E, Arias L, Dossman M, Molina EJ (2015) Servicios ambientales de Sistemas Silvopastoriles Intensivos: mejora en propiedades del suelo y restauración ecológica. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas Agroforestales. Funciones productivas, socioeconómicas y ambientales. Serie Técnica Informe Técnico 402, CATIE, Turrialba, Fundación CIPAV, Cali, pp 331–347

    Google Scholar 

  • Curry C (2009) The consumption of atmospheric methane by soil in a simulated future climate. Biogeosciences 6:2355–2367

    Article  CAS  Google Scholar 

  • de Figueiredo EB, Panosso AR, Reicosky DC, La Scala N (2015) Short-term CO2-C emissions from soil prior to sugarcane (Saccharum spp.) replanting in southern Brazil. GCB Bioenergy 7:316–327

    Article  CAS  Google Scholar 

  • de Klein CAM, Ledgard SF (2005) Nitrous oxide emissions from New Zealand agriculture—key sources and mitigation strategies. Nutr Cycl Agroecosys 72:77–85

    Article  CAS  Google Scholar 

  • de Klein CAM, Li Z, Sherlock RR (2004) Determination of the N2O emission factor from animal excreta or urea, following a winter application in two regions of New Zealand. Report for MAF policy. https://www.mpi.govt.nz/document-vault/2933. Accessed 20 May 2016

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Mand S, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Chen Z, Marquis N, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 128–234

    Google Scholar 

  • Galbally IE, Meyer MCP, Wang Y, Smith CJ, Weeks IA (2010) Nitrous oxide emissions from a legume pasture and the influences of liming and urine addition. Agric Ecosyst Environ 136:262–272

    Article  CAS  Google Scholar 

  • Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock—a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, p 139

    Google Scholar 

  • Harrison MT, McSweeney C, Tomkins NW, Eckard RJ (2015) Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala. Agric Syst 136:138–146

    Article  Google Scholar 

  • Hendriks DMD, van Huissteden J, Dolman AJ, van der Molen MK (2007) The full greenhouse gas balance of an abandoned peat meadow. Biogeosciences 4:411–424

    Article  CAS  Google Scholar 

  • Herrero M, Henderson B, Havlik P, Thornton PK, Conant RT, Smith P, Wirsenius S, Hristov AN, Gerber P, Gill M, Butterbach-Bahl K, Valin H, Garnett T, Stehfest E (2016) Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 6:452–461

    Article  Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical SCIENCE Centre, San Jose

    Google Scholar 

  • Hristov AN, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, Rotz A, Dell C, Adesogan A, Yang W, Tricarico J, Kebreab E, Waghorn G, Dijkstra J, Oosting S (2013) Animal production and health paper No. 177. In: Gerber PJ, Henderson B, Makkar HP (eds) Mitigation of greenhouse gas emissions in livestock production—a review of technical options for non-CO2 emissions. FAO, Rome

    Google Scholar 

  • Hu H-W, Chen D, He J-Z (2015) Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol Rev 39:729–749

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim M, Guerra L, Casasola F, Neely N (2010) Importance of silvopastoral systems for mitigation of climate change and harnessing of environmental benefits. In: Abberton M, Conant R, Batello C (eds) Grassland carbon sequestration: management, policy and economics. Proceedings of the workshop on the role of grassland carbon sequestration in the mitigation of climate change. Integrated Crop Management, vol 11. FAO, Roma, Italy, pp 189–196

  • Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) (1999) NTC 4657. Alimento para animales. Determinación del contenido de nitrógeno y cálculo del contenido de proteína cruda. Método Kjeldahl. Bogotá

  • Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) (2005) NTC 5350. Calidad del suelo. Determinación del Fósforo disponible. Instituto Colombiano de Normas Técnicas y Certificación. Bogotá

  • Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) (2006) NTC 5402. Calidad del suelo. Determinación del Azufre. Instituto Colombiano de Normas Técnicas y Certificación. Bogotá

  • Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) (2008a) NTC 5264. Calidad del suelo. Determinación del pH en suelos. Instituto Colombiano de Normas Técnicas y Certificación. Bogotá

  • Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) (2008b) NTC 5403. Calidad del suelo. Determinación del Carbono Orgánico. Instituto Colombiano de Normas Técnicas y Certificación. Bogotá

  • Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) (2008c) NTC 5349. Determinación de las bases intercambiables: los cationes Calcio, Magnesio, Sodio y Potacio. Método de extracción con Acetato de Amonio 1 N y pH 7. Instituto Colombiano de Normas Técnicas y Certificación. Bogotá

  • Instituto Geográfico Agustín Codazzi (IGAC) (2006) Métodos analíticos del laboratorio de suelos IGAC Subdirección de Agrología. VI Edición, Bogotá

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2006) 2006 IPCC Guideline for National Greenhouse Inventories. Intergovernmental Panel on Climate Change IPCC, France, Paris (IPCC/OECD/IEA)

    Google Scholar 

  • Kim DS, Kim JC (2002) Soil nitric and nitrous oxide emissions from agricultural and tidal flat fields in southwestern Korea. J Environ Eng Sci 1:359–369

    Article  CAS  Google Scholar 

  • Korir D, Goopy J, Gachuiri C, Butterbach-Bahl K (2015) Supplementation with Calliandra calothyrsus improves N retention in cattle fed low protein diets. Anim Prod Sci 5:619–626

    Google Scholar 

  • Kumar BM, George SJ, Jamaludheen V, Suresh TK (1998) Comparison of biomass production, tree allometry and nutrient use efficiency of multipurpose trees grown in woodlot and silvopastoral experiments in Kerala, India. For Ecol Manag 112:145–163

    Article  Google Scholar 

  • Lai DYF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19:409–421

    Article  CAS  Google Scholar 

  • Lambie SM, Schipper LA, Balks MR, Baisden WT (2012) Solubilisation of soil carbon following treatment with cow urine under laboratory conditions. Soil Res 50(1):50–57

    Article  Google Scholar 

  • Lang M, Cai ZC, Chang SX (2011) Effects of land use type and incubation temperatura on greenhouse gas emissions from Chinese and Canadian Soils. J Soils Sediments 11(1):15–24

    Article  CAS  Google Scholar 

  • Laville P, Lehuger S, Loubet B, Chaumartin F, Cellier P (2011) Effect of management, climate and soil conditions on N2O and NO emissions from an arable crop rotation using high temporal resolution measurements. Agric For Meteorol 15:1228–12240

    Google Scholar 

  • Li YY, Dong SK, Liu S, Zhou H, Gao Q, Cao G, Wang X, Su X, Zhang Y, Tang L, Zhao H, Wu X (2015) Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China. Soil Biol Biochem 80:306–314

    Article  CAS  Google Scholar 

  • Linquist B, Van Groenigen KJ, Adviento-Borbe MA, Pittelkow C, Van Kessel C (2012) An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Chang Biol 18:194–209

    Article  Google Scholar 

  • Luo J, Lindsey SB, Ledgard SF (2008) Nitrous oxide emissions from animal urine application on a New Zealand pasture. Biol Fertil Soils 44:463–470

    Article  CAS  Google Scholar 

  • Luo J, de Klein CAM, Ledgard SF, Saggar S (2010) Management options to reduce nitrous oxide emissions from intensively grazed pastures: a review. Agric Ecosyst Environ 136:282–291

    Article  CAS  Google Scholar 

  • Medvedeff CA, Bridgham SD, Pfeifer-Meister L, Keller JK (2015) Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands? Soil Biol Biochem 86:34–41

    Article  CAS  Google Scholar 

  • Meng Q, Sun Y, Zhao J, Zhou L, Ma X, Zhou M, Gao W, Wang G (2014) Distribution of carbon and nitrogen in water-stable aggregates and soil stability under long-term manure application in solonetzic soils of the Songnen plain, northeast China. J Soils Sediments 14(6):1041–1049

    Article  CAS  Google Scholar 

  • Merbold L, Steinlin C, Hagedorn F (2013) Winter greenhouse gas emissions (CO2, CH4 and N2O) from a sub-alpine grassland. Biogeosci Discuss 10:401–445

    Article  Google Scholar 

  • Minamikawa K, Tokida T, Sudo S, Padre A, Yagi K (2015) Guidelines for measuring CH4 and N2O emissions from rice paddies by a manually operated closed chamber method. National Institute for Agro-Environmental Sciences, Tsukuba

    Google Scholar 

  • Molina IC, Angarita EA, Mayorga OL, Chará J, Barahona R (2016) Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livest Sci 185:24–29

    Article  Google Scholar 

  • Muñoz C, Saggar S, Berben P, Giltrap D, Jha N (2011) Influence of waiting time after insertion of base chamber into soil on produced greenhouse gas fluxes. Chil J Agric Res 71(4):610–614

    Article  Google Scholar 

  • Murgueitio E, Chará JD, Barahona R, Cuartas CA, Naranjo JF (2014) Intensive silvopastoral systems (ISPS), mitigation and adaptation tool to climate change. Trop Subtrop Agroecosyst 17(3):501–507

    Google Scholar 

  • Murgueitio E, Barahona R, Chará J, Flores M, Mauricio RM, Molina JJ (2015a) The intensive silvopastoral systems in Latin America: sustainable alternative to face climatic change in animal husbandry. Cuban J Agric Sci 49(4):541–554

    Google Scholar 

  • Murgueitio E, Flores M, Calle Z, Chará J, Barahona R, Molina CH, Uribe F (2015b) Productividad en Sistemas silvopastoriles intensivos en América Latina. In: Montangnini F, Somattiba E, Murgueitio E, Fasola H, Eibl B (eds) Sistemas agroforestales. Funciones productivas, socioeconómicas y ambientales. CIPAV, Cali, pp 59–101

    Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    Article  CAS  Google Scholar 

  • Oertel C, Matschullat J, Zurba K, Zimmermann K, Erasmi S (2016) Greenhouse gas emissions from soils—a review. Chemie der Erde –Geochemistry 76(3):327–352

    Article  CAS  Google Scholar 

  • Orwin KH, Bertram JE, Clough TJ, Condron LM, Sherlock RR, O’Callaghan M, Ray J, Baird DB (2010) Impact of bovine urine deposition on soil microbial activity, biomass, and community structure. Appl Soil Ecol 44:89–100

    Article  Google Scholar 

  • Pastrana I, Reza S, Espinosa M, Suárez E, Díaz E (2011) Efecto de la fertilización nitrogenada en la dinámica del óxido nitroso y metano en Brachiaria humidicola (Rendle) Schweickerdt. Corpoica Cienc Tecnol Agropecu 12(2):134–142

    Article  Google Scholar 

  • Rafique R, Hennessy D, Kiely G (2011) Nitrous oxide emission from grazed grassland under different management systems. Ecosystems 14:563–582

    Article  CAS  Google Scholar 

  • Reay D, Grace J (2007) Carbon dioxide: importance, sources and sinks. In: Reay D et al (eds) Greenhouse gas sinks. CAB International, Wallingford, pp 1–10

    Chapter  Google Scholar 

  • Rivera J, Chará J, Barahona R (2016) Análisis de ciclo de vida para la producción de leche bovina en un sistema silvopastoril intensivo y un sistema convencional en Colombia. Trop Subtrop Agroecosyst 19:237–251

    Google Scholar 

  • Rivera J, Molina I, Chará J, Murgueitio E, Barahona R (2017) Intensive silvopastoral systems with Leucaena leucocephala (Lam) de Wit: productive alternative in the tropic in view of climate change. Pastos y Forrajes 40:159–170

    Google Scholar 

  • Saggar S, Andrew RM, Tate KR, Hedley CB, Rodda NJ, Townsend JA (2004) Modelling nitrous oxide emissions from dairy grazed pastures. Nutr Cycl Agroecosys 68:243–255

    Article  CAS  Google Scholar 

  • Senbayram M, Chen R, Budai A, Bakken L, Dittert K, Zavattaro L, Grignani C, Acutis M, Rochette P (2012) N2O emission and the N2O/(N2O + N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agric Ecosyst Environ 147:4–12

    Article  CAS  Google Scholar 

  • Sherlock RR, de Klein CAM, Li Z (2003) Determination of the N2O and CH4 emission factor from animal excreta, following a summer application in 3 regions of New Zealand. Report for MAF policy. https://www.mpi.govt.nz/document-vault/2950. Accessed 20 May 2017

  • Sordi A, Dieckow J, Bayer C, Albuquerque MA, Piva JT, Zanatta JA, Tomazi M, Rosa CM, Moraes A (2014) Nitrous oxide emission factors for urine and dung patches in a subtropical Brazilian pastureland. Agric Ecosyst Environ 90:94–103

    Article  CAS  Google Scholar 

  • Statistical Analysis System (SAS) (2001) SAS/STAT user’s guide, Software Versión 9.1. SAS institute Inc, Cary

    Google Scholar 

  • Uchida Y, Clough TJ, Kelliher FM, Hunt JM, Sherlock RR (2011) Effects of bovine urine, plants and temperature on N2O and CO2 emissions from a sub-tropical soil. Plant Soil 345:171–186

    Article  CAS  Google Scholar 

  • Valadares RFD, Broderick GA, Valadares SC, Clayton MK (1999) Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J Dairy Sci 82:2686–2696

    Article  CAS  PubMed  Google Scholar 

  • Van der Weerden TJ, Luo JF, de Klein CAM, Hoogendoorn CJ, Littlejohn RP, Rys GJ (2011) Disaggregating nitrous oxide emission factors for ruminant urine and dung deposited onto pastoral soils. Agric Ecosyst Environ 141(3–4):426–436

    Article  CAS  Google Scholar 

  • Van der Weerden TJ, Manderson A, Kelliher FM, de Klein CAM (2014) Spatial and temporal nitrous oxide emissions from dairy cattle urine deposited onto grazed pastures across New Zealand based on soil water balance modelling. Agric Ecosyst Environ 189:92–100

    Article  CAS  Google Scholar 

  • Van Groenigen JW, Kuikman PJ, de Groot WJM, Velthof GL (2005) Nitrous oxide emissions from urine-treated soil as influenced by urine composition and soil physical conditions. Soil Biol Biochem 37:463–473

    Article  CAS  Google Scholar 

  • Wachendorf C, Lampe C, Taube F, Dittert K (2008) Nitrous oxide emissions and dynamics of soil nitrogen under 15N-labeled cow urine and dung patches on a sandy grassland soil. J Plant Nutr Soil Sci 171:171–180

    Article  CAS  Google Scholar 

  • Whitehead DC (1995) Grassland nitrogen. CAB International, Wallingford

    Google Scholar 

  • Williams DL, Ineson P, Coward PA (1999) Temporal variations in nitrous oxide fluxes from urine-affected grassland. Soil Biol Biochem 31:779–788

    Article  CAS  Google Scholar 

  • Wu X, Yao Z, Bruggemann N, Shen ZY, Wolf B, Dannenmann M, Zheng X, Butterbach-Bahl K (2010) Effects of soil moisture and temperature on CO2 and CH4 soil e atmosphere exchange of various land use/cover types in a semiearid grassland in Inner Mongolia, China. Soil Biol Biochem 42:773–787

    Article  CAS  Google Scholar 

  • Ye R, Doane TA, Morris J, Horwath WR (2015) The effect of rice straw on the priming of soil organic matter and methane production in peat soils. Soil Biol Biochem 81:98–107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support received from the Colombian Ministry of Agriculture and Rural Development and the International Centre for Tropical Agriculture for the project “Análisis Integral de sistemas productivos en Colombia para la adaptación al cambio climático” and from COLCIENCIAS for the project “Uso de nitrógeno por ganado bovino criollo colombiano bajo sistemas silvopastoriles intensivos con Leucaena leucocephala en condiciones de bosque seco tropical (561-2011)”. Thanks also to El Hatico and Trejitos farm owners for the permission to carry out this study, the provision of data and the collaboration during the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando Barahona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, J.E., Chará, J. & Barahona, R. CH4, CO2 and N2O emissions from grasslands and bovine excreta in two intensive tropical dairy production systems. Agroforest Syst 93, 915–928 (2019). https://doi.org/10.1007/s10457-018-0187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-018-0187-9

Keywords

Navigation