Effect of plant diversity on income generated by agroforestry systems in Talamanca, Costa Rica

  • Ricardo Salazar-Díaz
  • Philippe Tixier


Optimal use of resources in agroforestry requires the evaluation of multi-species and multi-strata cropping systems. The current study evaluated the effect of plant diversity on the performance of agroforestry systems in Talamanca, Costa Rica. Plants in nine 100-m2 plots in each of 20 fields were classified into five groups (banana, cacao, other fruits, timber, and firewood), and diversity was assessed by the Shannon–Wiener index. The production of each individual plant was estimated and converted into income according to local market prices. Our results indicated that as plant diversity increased, the income derived per plant increased for other fruits, firewood, and timber and also when all cultivated plants were considered as one group. In contrast, the income derived per plant decreased for banana and cacao as diversity increased. This suggests that complementarity between plants was stronger than competition for those plants occupying the higher strata of the canopy (i.e., other fruits, firewood, and timber) but that competition was stronger than complementarity for plants occupying the lower strata of the canopy (i.e., banana and cacao). These results increase our understanding of how the composition and the organisation of these agroforestry systems may be optimized.


Multi-strata agroforestry systems Productivity Musa Cacao Global evaluation Economic value 



We thank the farmers who allowed us to use their farms for this study; Alonso Porras, Bruno Lopez, Federico Gomez, and Marvin Lizano for assistance with data collection; and Walter Rodriguez from APPTA for technical information.This study received financial support from the Instituto Tecnológico de Costa Rica and Instituto Francés de América Central. This work is part of the Scientific Partnership Platform on Agroforestry Systems with Perennial Crop (PCP AFS-CP) led by CIRAD and CATIE. Finally, we thank Bruno Rapidel (CIRAD) for his comments on an early version of this manuscript.


  1. Almendarez E, Orozco L, López A (2013) Existencias de especies maderables y frutales en fincas de Waslala, Nicaragua. Agrofor en las Am 49:68–77Google Scholar
  2. Anglaaere LCN, Cobbina J, Sinclair FL, McDonald MA (2011) The effect of land use systems on tree diversity: farmer preference and species composition of cocoa-based agroecosystems in Ghana. Agrofor Syst 81:249–265CrossRefGoogle Scholar
  3. Bates D, Maechler M, Bolker BM. (2011) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-39.
  4. Bhagwat SA, Willis KJ, Birks Whittaker (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23:261–267CrossRefPubMedGoogle Scholar
  5. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135CrossRefPubMedGoogle Scholar
  6. Borge C, Castillo R (1997) Cultura y conservación en la Talamanca indígena. EUNED, CartagoGoogle Scholar
  7. Boza A (2014) La frontera indígena de la Gran Talamanca. ET, EUCR, EUNED, EUNA, CartagoGoogle Scholar
  8. Burgos A, Armero H, Somarriba E (2008) Árboles frutales en los campo agrícolas de las fincas indígenas de Talamanca, Costa Rica. Agrofor en las Am 46:21–25Google Scholar
  9. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67CrossRefPubMedGoogle Scholar
  10. Cerda R, Deheuvels O, Calvache D, Niehaus L, Saenz Y, Kent J, Vilchez S, Villota A, Martinez C, Somarriba E (2014) Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agrofor Syst 88:957–981CrossRefGoogle Scholar
  11. de Aguiar MI, Fialho JS, de Araújo FdCS, Campanha MM, de Oliveira TS (2013) Does biomass production depend on plant community diversity? Agrofor Syst 87:699–711CrossRefGoogle Scholar
  12. de Sousa KFD, Detlefsen G, de Melo Virginio Filho E, Tobar D, Casanoves F (2016) Timber yield from smallholder agroforestry systems in Nicaragua and Honduras. Agrofor Syst 90:207–218CrossRefGoogle Scholar
  13. Deheuvels O, Avelino J, Somarriba E, Malezieux E (2012) Vegetation structure and productivity in cocoa-based agroforestry systems in Talamanca, Costa Rica. Agr Ecosyst Environ 149:181–188CrossRefGoogle Scholar
  14. Dybzinski R, Fargione JE, Zak DR, Fornara D, Tilman D (2008) Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia 158:85–93CrossRefPubMedGoogle Scholar
  15. Fernándes E, García V (1972) Etude sur la nutrition du bananier aux lies Canaries: effet de la nutrition azotée sur la circonférence du pseudo-tronc. Fruits 27:511–512Google Scholar
  16. Franco JG, King SR, Masabni JG, Volder A (2015) Plant functional diversity improves short-term yields in a low-input intercropping system. Agr Ecosyst Environ 203:1–10CrossRefGoogle Scholar
  17. Franzel S, Scherr SJ (2002) Trees on the farm: assessing the adoption potential of agroforestry practices in Africa. CABI Publishing, WallingfordCrossRefGoogle Scholar
  18. Gockowski J, Sonwa D (2011) Cocoa intensification scenarios and their predicted impact on CO2 emissions, biodiversity conservation, and rural livelihoods in the guinea rain forest of West Africa. Environ Manage 48:307–321CrossRefPubMedGoogle Scholar
  19. Guiracocha G (2000) Conservación de la biodiversidad de los sistemas agroforestales cacaoteros y bananeros de Talamanca, Costa Rica. CATIE, TurrialbaGoogle Scholar
  20. Holdrige LR (1978) Life zone ecology. IICA, San JoséGoogle Scholar
  21. Hooper D, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277:1302–1305CrossRefGoogle Scholar
  22. Hooper D, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005a) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35CrossRefGoogle Scholar
  23. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005b) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35CrossRefGoogle Scholar
  24. Jarchow ME, Liebman M (2012) Nutrient enrichment reduces complementarity and increases priority effects in prairies managed for bioenergy. Biomass Bioenerg 36:381–389CrossRefGoogle Scholar
  25. Jucker T, Bouriaud O, Avacaritei D, Danila I, Duduman G, Valladares F, Coomes DA (2014) Competition for light and water play contrasting roles in driving diversity-productivity relationships in Iberian forests. J Ecol 102:1202–1213CrossRefGoogle Scholar
  26. Kapp G (1989) Perfil ambiental de la zona de Baja Talamanca. CATIE, TurrialbaGoogle Scholar
  27. Lamanda N, Roux S, Delmotte S, Merot A, Rapidel B, Adam M, Wery J (2012) A protocol for the conceptualisation of an agro-ecosystem to guide data acquisition and analysis and expert knowledge integration. Eur J Agron 38:104–116CrossRefGoogle Scholar
  28. Leakey RRB, Tchoundjeu Z, Schreckenberg K, Shackleton ES, Shackleton CM (2005) Agroforestry tree products:targeting poverty reduction and enhanced livelihood. Int J Agric Sustain 3:1–23CrossRefGoogle Scholar
  29. Lebauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379CrossRefPubMedGoogle Scholar
  30. Lehman CI, Tilman D (2000) Biodiversity, stability, and productivity in competitive communities. Am Nat 156(5):534–552CrossRefGoogle Scholar
  31. Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205CrossRefGoogle Scholar
  32. Malezieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62CrossRefGoogle Scholar
  33. Molua EL (2003) The economics of tropical agroforestry systems: the case of agroforestry farms in Cameroon. For Policy Econ 7:199–211CrossRefGoogle Scholar
  34. Nair PKR (2007) Agroforestry for sustainability of lower-inputs land-use systems. J Crop Improv 19:25–47CrossRefGoogle Scholar
  35. Nakamura N (2008) Species richness and aggregation effects on the productivity of ruderal plant communities under drought perturbation. Biosci Horiz 1:128–135CrossRefGoogle Scholar
  36. Ngo Bieng M, Gidoin C, Avelino J, Cilas C, Deheuvels O, Wery J (2013) Diversity and spatial clustering of shade trees affect cacao yield and pathogen pressure in Costa Rican agroforests. Basic Appl Ecol 14:329–336CrossRefGoogle Scholar
  37. Oksanen FJ, Blanchet G, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry HM, Wagner S, Wagner H (2015) Vegan: community ecology. Package. R package version 2.2-1Google Scholar
  38. Paul C, Griess VC, Havardi-Burger N, Weber M (2015) Timber-based agrisilviculture improves financial viability of hardwood plantations: a case study from Panama. Agrofor Syst 89:217–235CrossRefGoogle Scholar
  39. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  40. Ramírez O, Somarriba E, Ludewigs T, Ferreira P (2001) Financial returns, stability and risk of cacao-plantain-timber agroforestry systems in Central America. Agrofor Syst 51:141–154CrossRefGoogle Scholar
  41. Rasul G, Thapa GB (2006) Financial and economic suitability of agroforestry as an alternative to shifting cultivation: the case of the Chittagong Hill Tracts, Bangladesh. Agric Syst 91:29–50CrossRefGoogle Scholar
  42. Reich PB, Buschena C, Tjoelker MG, Wrage K, Knops J, Tilman D, Machado JL (2003) Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: a test of functional group differences. New Phytol 157:617–631CrossRefGoogle Scholar
  43. Sanchez PA (1995) Science in agroforestry. Agrofor Syst 30:5–55CrossRefGoogle Scholar
  44. Shannon C (1948) A mathematical theory of communication. Bell Syst Techn J 27:379–423CrossRefGoogle Scholar
  45. Smith RG, Gross KL, Robertson GP (2008) Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems 11:355–366CrossRefGoogle Scholar
  46. Somarriba E, Suarez-Islas A, Calero-Borge W, Villota A, Castillo C, Vilchez S, Deheuvels O, Cerda R (2014) Cocoa-timber agroforestry systems: Theobroma cacao-Cordia alliodora in Central America. Agrofor Syst 88:1001–1019CrossRefGoogle Scholar
  47. Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. University of Chicago Press, ChicagoGoogle Scholar
  48. Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, lscher DH, Juhrbandt J, Kessler M, Perfecto I, Scherber C (2010) Multifunctional shade-tree management in tropical agroforestry landscapes. J Appl Ecol 8:1365–2664Google Scholar
  49. Vandermeer J, Lawrence D, Symstad A, Hobbie S (2002) Effects of biodiversity on ecosystem functioning in managed ecosystems. Biodiversity and ecosystem functioning. Oxford University Press, Oxford, pp 157–168Google Scholar
  50. Zhang Y, Chen HYH, Reich PB (2012) Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J Ecol 100:742–749CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.ITCR, Escuela de AgronegociosCartagoCosta Rica
  2. 2.CIRAD, UPR GECOMontpellierFrance
  3. 3.GECO, Univ Montpellier, CIRADMontpellierFrance
  4. 4.CATIE, Departamento de Agricultura y AgroforesteríaCartago, TurrialbaCosta Rica

Personalised recommendations