Skip to main content

Soil carbon sequestration in agroforestry systems: a meta-analysis


Agroforestry systems may play an important role in mitigating climate change, having the ability to sequester atmospheric carbon dioxide (CO2) in plant parts and soil. A meta-analysis was carried out to investigate changes in soil organic carbon (SOC) stocks at 0–15, 0–30, 0–60, 0–100, and 0 ≥ 100 cm, after land conversion to agroforestry. Data was collected from 53 published studies. Results revealed a significant decrease in SOC stocks of 26 and 24% in the land-use change from forest to agroforestry at 0–15 and 0–30 cm respectively. The transition from agriculture to agroforestry significantly increased SOC stock of 26, 40, and 34% at 0–15, 0–30, and 0–100 cm respectively. The conversion from pasture/grassland to agroforestry produced significant SOC stock increases at 0–30 cm (9%) and 0–30 cm (10%). Switching from uncultivated/other land-uses to agroforestry increased SOC by 25% at 0–30 cm, while a decrease was observed at 0–60 cm (23%). Among agroforestry systems, significant SOC stocks increases were reported at various soil horizons and depths in the land-use change from agriculture to agrisilviculture and to silvopasture, pasture/grassland to agrosilvopastoral systems, forest to silvopasture, forest plantation to silvopasture, and uncultivated/other to agrisilviculture. On the other hand, significant decreases were observed in the transition from forest to agrisilviculture, agrosilvopastoral and silvopasture systems, and uncultivated/other to silvopasture. Overall, SOC stocks increased when land-use changed from less complex systems, such as agricultural systems. However, heterogeneity, inconsistencies in study design, lack of standardized sampling procedures, failure to report variance estimators, and lack of important explanatory variables, may have influenced the outcomes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael G. Jacobson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 148 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Stefano, A., Jacobson, M.G. Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforest Syst 92, 285–299 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Agroforestry
  • Carbon sequestration
  • Soil organic carbon
  • Climate change
  • Meta-analysis