Spatial similarities between European agroforestry systems and ecosystem services at the landscape scale

Abstract

Agroforestry systems are known to provide ecosystem services which differ in quantity and quality from conventional agricultural practices and could enhance rural landscapes. In this study we compared ecosystem services provision of agroforestry and non-agroforestry landscapes in case study regions from three European biogeographical regions: Mediterranean (montado and dehesa), Continental (orchards and wooded pasture) and Atlantic agroforestry systems (chestnut soutos and hedgerows systems). Seven ecosystem service indicators (two provisioning and five regulating services) were mapped, modelled and assessed. Clear variations in amount and provision of ecosystem services were found between different types of agroforestry systems. Nonetheless regulating ecosystems services were improved in all agroforestry landscapes, with reduced nitrate losses, higher carbon sequestration, reduced soil losses, higher functional biodiversity focussed on pollination and greater habitat diversity reflected in a high proportion of semi-natural habitats. The results for provisioning services were inconsistent. While the annual biomass yield and the groundwater recharge rate tended to be higher in agricultural landscapes without agroforestry systems, the total biomass stock was reduced. These broad relationships were observed within and across the case study regions regardless of the agroforestry type or biogeographical region. Overall our study underlines the positive influence of agroforestry systems on the supply of regulating services and their role to enhance landscape structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. AFN (2010) Inventário Florestal Nacional Portugal Continental IFN5, 2005–2006. Lisboa

  2. Allen RG, Pereira LS, Raes D, et al (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56

  3. Bailey D, Billeter R, Aviron S et al (2007) The influence of thematic resolution on metric selection for biodiversity monitoring in agricultural landscapes. Landsc Ecol 22:461–473. doi:10.1007/s10980-006-9035-9

    Article  Google Scholar 

  4. Bailey D, Schmidt-Entling MH, Eberhart P et al (2010) Effects of habitat amount and isolation on biodiversity in fragmented traditional orchards. J Appl Ecol 47:1003–1013. doi:10.1111/j.1365-2664.2010.01858.x

    Article  Google Scholar 

  5. Ballabio C, Panagos P, Monatanarella L (2016) Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma 261:110–123. doi:10.1016/j.geoderma.2015.07.006

    Article  Google Scholar 

  6. Bebi P, Krumm F, Brändli UB, Zingg A (2013) Dynamik dichter, gleichförmiger Gebirgsfichtenwälder. Schweizerische Zeitschrift fur Forstwes 164:37–46. doi:10.3188/szf.2013.0037

    Article  Google Scholar 

  7. Bellot J, Sánchez JR, Chirino E et al (1999) Effect of different vegetation type cover on the soil water balance in semi-arid areas of South Eastern Spain. Phys Chem Earth 24:353–357. doi:10.1016/S1464-1909(99)00013-1

    Article  Google Scholar 

  8. Biasi R, Brunori E, Ferrara C, Salvati L (2016) Towards sustainable rural landscapes? a multivariate analysis of the structure of traditional tree cropping systems along a human pressure gradient in a mediterranean region. Agrofor Syst. doi:10.1007/s10457-016-0006-0

    Article  Google Scholar 

  9. Billeter R, Liira J, Bailey D et al (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150. doi:10.1111/j.1365-2664.2007.01393.x

    Article  Google Scholar 

  10. Buttler A, Kohler F, Gillet F, Nair PKR (2009) The Swiss mountain wooded pastures: patterns and processes. Agrofor Eur Curr Status Futur Prospect 6:377–396. doi:10.1007/978-1-4020-8272-6_19

    Article  Google Scholar 

  11. Campos I, Villodre J, Carrara A, Calera A (2013) Remote sensing-based soil water balance to estimate Mediterranean holm oak savanna (dehesa) evapotranspiration under water stress conditions. J Hydrol 494:1–9. doi:10.1016/j.jhydrol.2013.04.033

    Article  Google Scholar 

  12. Commission European (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Council of the European Communities (CEC). Off J Eur Communities 206:7–50

    Google Scholar 

  13. Conrad O, Bechtel B, Bock M et al (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991–2007. doi:10.5194/gmd-8-1991-2015

    Article  Google Scholar 

  14. Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. doi:10.1111/j.1461-0248.2008.01219.x

    Article  PubMed  Google Scholar 

  15. Dale VH, Polasky S (2007) Measures of the effects of agricultural practices on ecosystem services. Ecol Econ 64:286–296. doi:10.1016/j.ecolecon.2007.05.009

    Article  Google Scholar 

  16. den Herder M, Moreno G, Mosquera-Losada RM et al (2017) Current extent and stratification of agroforestry in the European Union. Agric Ecosyst Environ 241:121–132. doi:10.1016/j.agee.2017.03.005

    Article  Google Scholar 

  17. ESRI (Environmental Systems Resource Institute) (2016) ArcGIS Desktop: Release 10.4. Redlands CA

  18. Eurostat (2013) Land cover statistics

  19. Fagerholm N, Oteros-Rozas E, Raymond CM et al (2016) Assessing linkages between ecosystem services, land-use and well-being in an agroforestry landscape using public participation GIS. Appl Geogr 74:30–46. doi:10.1016/j.apgeog.2016.06.007

    Article  Google Scholar 

  20. FAO (2017) FAO Statistic—CROPS

  21. García-Ruiz JM, Beguería S, Nadal-Romero E et al (2015) A meta-analysis of soil erosion rates across the world. Geomorphology 239:160–173

    Article  Google Scholar 

  22. Gaspar P, Mesías FJ, Escribano M et al (2007) Economic and management characterization of dehesa farms: implications for their sustainability. Agrofor Syst 71:151–162. doi:10.1007/s10457-007-9081-6

    Article  Google Scholar 

  23. Grubinger H (2015) Basiswissen Kulturbautechnik und Landneuordnung - Planung. Schweizerbart’sche Verlagsbuchhandlung, Bewertung, Nutzung und Schutz unserer Lebensräume für Planer, Kulturbau- und Umweltingenieure

    Google Scholar 

  24. Haines-Young R, Potschin M (2013) Common international classification of ecosystem services (CICES): consultation on version 4, August–December 2012

  25. Herzog F (1998a) Streuobst: a traditional agroforestry system as a model for agroforestry development in temperate Europe. Agrofor Syst 42:61–80. doi:10.1023/A:1006152127824

    Article  Google Scholar 

  26. Herzog F (1998b) Agroforestry in temperate Europe: history, present importance and future development. Mix Farming Syst Eur 47–52

  27. Herzog F, Prasuhn V, Spiess E, Richner W (2008) Environmental cross-compliance mitigates nitrogen and phosphorus pollution from Swiss agriculture. Environ Sci Policy 11:655–668. doi:10.1016/j.envsci.2008.06.003

    Article  Google Scholar 

  28. Hiederer R (2013) Mapping soil properties for Europe - spatial representation of soil database attributes

  29. Howlett DS, Mosquera-Losada MR, Nair PKR et al (2011) Soil carbon storage in silvopastoral systems and a treeless pasture in northwestern Spain. J Environ Qual 40:825–832. doi:10.2134/jeq2010.0145

    Article  PubMed  CAS  Google Scholar 

  30. Hürdler J, Prasuhn V, Spiess E (2015) Abschätzung diffuser Stickstoff- und Phosphoreinträge in die Gewässer der Schweiz

  31. Jarvis A, Reuter HII, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. Int. Cent. Trop. Agric. http://srtm.csi.cgiar.org

  32. Joffre R, Rambal S, Ratte JP (1999) The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agrofor Syst 45:57–79. doi:10.1007/978-3-642-15720-2_16

    Article  Google Scholar 

  33. Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10. doi:10.1007/s10457-009-9229-7

    Article  Google Scholar 

  34. Kay S, Crous-Duran J, Garcia de Jalon S, et al Landscape-scale modelling of agroforestry ecosystems services: a methodological approach. submitted

  35. Liski J, Palosuo T, Peltoniemi M, Sievänen R (2005) Carbon and decomposition model Yasso for forest soils. Ecol Modell 189:168–182. doi:10.1016/j.ecolmodel.2005.03.005

    Article  CAS  Google Scholar 

  36. Lonsdorf E, Kremen C, Ricketts T et al (2009) Modelling pollination services across agricultural landscapes. Ann Bot 103:1589–1600. doi:10.1093/aob/mcp069

    Article  PubMed  PubMed Central  Google Scholar 

  37. López-Díaz ML, Rolo V, Moreno G (2011) Trees’ role in nitrogen leaching after organic, mineral fertilization: a greenhouse experiment. J Environ Qual 40:853–859. doi:10.2134/jeq2010.0165

    Article  PubMed  CAS  Google Scholar 

  38. Maes J, Egoh B, Willemen L et al (2012) Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst Serv 1:31–39. doi:10.1016/j.ecoser.2012.06.004

    Article  Google Scholar 

  39. Makó A, Kocsis M, Barna G, Tóth G (2017) Mapping the storing and filtering capacity of European soils

  40. McNeely JA, Schroth G (2006) Agroforestry and biodiversity conservation—traditional practices, present dynamics, and lessons for the future. Biodivers Conserv 15:549–554. doi:10.1007/s10531-005-2087-3

    Article  Google Scholar 

  41. MEA (2003) Ecosystems and human well-being. Island Press, Washington, DC

    Google Scholar 

  42. Moreno G, Cubera E (2008) Impact of stand density on water status and leaf gas exchange in Quercus ilex. For Ecol Manag 254:74–84. doi:10.1016/j.foreco.2007.07.029

    Article  Google Scholar 

  43. Moreno G, Gonzalez-Bornay G, Pulido F et al (2016) Exploring the causes of high biodiversity of Iberian dehesas: the importance of wood pastures and marginal habitats. Agrofor Syst 90:87–105. doi:10.1007/s10457-015-9817-7

    Article  Google Scholar 

  44. Mouchet MA, Paracchini ML, Schulp CJE et al (2017) Bundles of ecosystem (dis)services and multifunctionality across European landscapes. Ecol Indic 73:23–28. doi:10.1016/j.ecolind.2016.09.026

    Article  Google Scholar 

  45. Nati C, Montorselli NB, Olmi R (2016) Wood biomass recovery from chestnut orchards: results from a case study. Agrofor Syst. doi:10.1007/s10457-016-0050-9

    Article  Google Scholar 

  46. Oppermann R, Beaufoy G, Jones G (2012) High nature value farming in Europe. verlag regionalkultur Ubstadt-Weiher

  47. Palma JHN (2017) Clipick—climate change web picker. A tool bridging daily climate needs in process based modelling in forestry and agriculture. For Syst. doi:10.5424/fs/2017261-10251

  48. Palma JHN, Paulo JA, Tomé M (2014) Carbon sequestration of modern Quercus suber L. silvoarable agroforestry systems in Portugal: a yieldSAFE-based estimation. Agrofor Syst 88:791–801. doi:10.1007/s10457-014-9725-2

    Article  Google Scholar 

  49. Palma JHN, Oliveira TS, Crous-Duran J et al (2017) AGFORWARD EU Project Deliverable 6.17 (6.2): Modelled agroforestry outputs at field and farm scale to support biophysical and environmental assessments

  50. Palma J, Graves A, Crous-Duran J, et al EcoYield-SAFE: maintaining a parameter-sparse approach in modelling silvopastoral systems. submitted

  51. Panagos P, Van Liedekerke M, Jones A, Montanarella L (2012) European soil data centre: response to European policy support and public data requirements. Land Use Policy 29:329–338. doi:10.1016/j.landusepol.2011.07.003

    Article  Google Scholar 

  52. Panagos P, Meusburger K, Ballabio C et al (2014) Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Sci Total Environ 479–480:189–200. doi:10.1016/j.scitotenv.2014.02.010

    Article  PubMed  CAS  Google Scholar 

  53. Panagos P, Borrelli P, Meusburger K et al (2015a) Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 48:38–50. doi:10.1016/j.landusepol.2015.05.021

    Article  Google Scholar 

  54. Panagos P, Borrelli P, Poesen J et al (2015b) The new assessment of soil loss by water erosion in Europe. Environ Sci Policy 54:438–447. doi:10.1016/j.envsci.2015.08.012

    Article  Google Scholar 

  55. Panagos P, Ballabio C, Borrelli P, Meusburger K (2016) Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. CATENA 137:161–172. doi:10.1016/j.catena.2015.09.015

    Article  Google Scholar 

  56. Pardini A (2009) Agroforestry systems in Italy: traditions towards modern management. In: Rigueiro-Rodróguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe. Advances in Agroforestry, vol 6. Springer, Dordrecht

    Google Scholar 

  57. Pereira H, Tomé M (2004) Cork oak. Encyclopedia of forest sciences. Elsevier, Oxford, pp 613–620

    Book  Google Scholar 

  58. Pimentel D, Stachow U, Takacs DA et al (1992) Conserving biological diversity in most biological diversity exists in human-managed ecosystems Agricultural/F Systems. Most 42:354–362. doi:10.2307/1311782

    Article  Google Scholar 

  59. Plieninger T, Hartel T, Martín-López B et al (2015) Wood-pastures of Europe: geographic coverage, social-ecological values, conservation management, and policy implications. Biol Conserv 190:70–79. doi:10.1016/j.biocon.2015.05.014

    Article  Google Scholar 

  60. R Development Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  61. Renard K, Foster G, Weesies G, et al (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)

  62. Reuter HI, Nelson A, Jarvis A (2007) An evaluation of void-filling interpolation methods for SRTM data. Int J Geogr Inf Sci 21:983–1008. doi:10.1080/13658810601169899

    Article  Google Scholar 

  63. Rigueiro-Rodríguez A, Santiago-Freijanes JJ, Ferreiro-Dominguez N, et al (2014) Celtic pig production in chestnut extensive systems in Galicia. In: 2nd EURAF Conference. EURAF,

  64. Scheper J, Holzschuh A, Kuussaari M et al (2013) Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss—a meta-analysis. Ecol Lett 16:912–920. doi:10.1111/ele.12128

    Article  PubMed  Google Scholar 

  65. Seitz B, Carrand E, Burgos S et al (2017) Erhöhte Humusvorräte in einem siebenjährigen Agroforstsystem in der Zentralschweiz/Augmentation des stocks d’humus dans un systeme agroforestier de sept ans en Suisse centrale. Agrar Schweiz 8:318–323

    Google Scholar 

  66. Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci USA 96:5995–6000. doi:10.1073/pnas.96.11.5995

    Article  PubMed  CAS  Google Scholar 

  67. Torralba M, Fagerholm N, Burgess PJ et al (2016) Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric Ecosyst Environ 230:150–161. doi:10.1016/j.agee.2016.06.002

    Article  Google Scholar 

  68. Tscharntke T, Klein AM, Kruess A et al (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. doi:10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  69. Turner KG, Odgaard MV, Bøcher PK et al (2014) Bundling ecosystem services in Denmark: trade-offs and synergies in a cultural landscape. Landsc Urban Plan 125:89–104. doi:10.1016/j.landurbplan.2014.02.007

    Article  Google Scholar 

  70. van der Werf W, Keesman K, Burgess P et al (2007) Yield-SAFE: a parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecol Eng 29:419–433. doi:10.1016/j.ecoleng.2006.09.017

    Article  Google Scholar 

  71. van der Zanden EH, Levers C, Verburg PH, Kuemmerle T (2016) Representing composition, spatial structure and management intensity of European agricultural landscapes: a new typology. Landsc Urban Plan 150:36–49. doi:10.1016/j.landurbplan.2016.02.005

    Article  Google Scholar 

  72. Zulian G, Maes J, Paracchini M (2013) Linking land cover data and crop yields for mapping and assessment of pollination services in Europe. Land 2:472–492. doi:10.3390/land2030472

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding through Grant 613520 from the European Commission (Project AGFORWARD, 7th Framework Program), the Xunta de Galicia, Consellería de Cultura, Educación e Ordenación Universitaria (“Programa de axudas á etapa posdoutoral DOG no. 122, 29/06/2016 p.27443, exp: ED481B 2016/071-0”), the Forest Research Center strategic project (PEst OE/AGR/UI0239/2014) and the Portuguese Foundation for Science and Technology through the contract SFRH/BD/52691/2014. We are grateful for the helpful comments provided by three anonymous reviewers on previous versions of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sonja Kay.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kay, S., Crous-Duran, J., Ferreiro-Domínguez, N. et al. Spatial similarities between European agroforestry systems and ecosystem services at the landscape scale. Agroforest Syst 92, 1075–1089 (2018). https://doi.org/10.1007/s10457-017-0132-3

Download citation

Keywords

  • Biodiversity
  • Biomass production
  • Carbon sequestration
  • Erosion
  • Groundwater recharge
  • Nitrate leaching
  • Pollination