Agroforestry Systems

, Volume 92, Issue 2, pp 221–237 | Cite as

Above- and belowground carbon stocks of two organic, agroforestry-based oil palm production systems in eastern Amazonia

  • Helen Monique Nascimento Ramos
  • Steel Silva VasconcelosEmail author
  • Osvaldo Ryohei Kato
  • Débora Cristina Castellani


Ecosystem-level assessments of carbon (C) stocks of agroforestry systems are scarce. We quantified the ecosystem-level C stocks of one agroforestry-based oil palm production system (AFSP) and one agroforestry-based oil palm and cacao production system (AFSP+C) in eastern Amazonia. We quantified the stocks of C in four pools: aboveground live biomass, litter, roots, and soil. We evaluated the distribution of litter, roots, and soil C stocks in the oil palm management zones and in the area planted with cacao and other agroforestry species. The ecosystem-C stock was higher in AFSP+C (116.7 ± 1.5 Mg C ha−1) than in AFSP (99.1 ± 3.1 Mg C ha−1). The total litter-C stock was higher in AFSP+C (3.27 ± 0.01 Mg C ha−1) than in AFSP (2.26 ± 0.06 Mg C ha−1). Total root and soil C stocks (0–30 cm) did not differ between agroforestry systems. Ecosystem-C stocks varied between agroforestry systems due to differences in both aboveground and belowground stocks. In general, the belowground-C stocks varied spatially in response to the management in the oil palm and non-oil palm strips; these results have important implications for the monitoring of ecosystem-level C dynamics and the refinement of soil management.


Aboveground biomass Ecosystem carbon stock Elaeis guineensis Litter Roots Soil carbon 


  1. Abbas F, Hammad HM, Fahad S et al (2017) Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios—a review. Environ Sci Pollut Res. doi: 10.1007/s11356-017-8687-0 Google Scholar
  2. Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449CrossRefGoogle Scholar
  3. Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agr Ecosyst Environ 99:15–27. doi: 10.1016/S0167-8809(03)00138-5 CrossRefGoogle Scholar
  4. Baah-Acheamfour M, Carlyle CN, Bork EW, Chang SX (2014) Trees increase soil carbon and its stability in three agroforestry systems in central Alberta, Canada. For Ecol Manag 328:131–139. doi: 10.1016/j.foreco.2014.05.031 CrossRefGoogle Scholar
  5. Bolfe EL, Batistella M (2011) Análise florística e estrutural de sistemas silviagrícolas em Tomé-Açu, Pará. Pesqui Agropecu Bras 46:1139–1147CrossRefGoogle Scholar
  6. Brancher T (2010) Estoque e ciclagem de carbono de sistemas agroflorestais em Tomé Amazônia Oriental. Thesis, Universidade Federal do ParáGoogle Scholar
  7. Cardinael R, Chevallier T, Cambou A et al (2017) Increased soil organic carbon stocks under agroforestry: a survey of six different sites in France. Agr Ecosyst Environ 236:243–255. doi: 10.1016/j.agee.2016.12.011 CrossRefGoogle Scholar
  8. Carvalho WR, Vasconcelos SS, Kato OR et al (2014) Short-term changes in the soil carbon stocks of young oil palm-based agroforestry systems in the eastern Amazon. Agrofor Syst 88:357–368. doi: 10.1007/s10457-014-9689-2 CrossRefGoogle Scholar
  9. Coe R, Huwe B, Schroth G (2003) Designing experiments and analysing data. In: Schroth G, Sinclair FL (eds) Trees, crops and soil fertility: concepts and research methods. CABI Publishing, Cambridge, pp 39–76Google Scholar
  10. Conant RT, Paustian K, Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343–355. doi:10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2Google Scholar
  11. Corley RHV, Tinker PB (2003) The oil palm. Blackwell Science, OxfordCrossRefGoogle Scholar
  12. Dawoe EK, Isaac ME, Quashie-Sam J (2010) Litterfall and litter nutrient dynamics under cocoa ecosystems in lowland humid Ghana. Plant Soil 330:55–64. doi: 10.1007/s11104-009-0173-0 CrossRefGoogle Scholar
  13. Dignac M-F, Derrien D, Barré P et al (2017) Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron Sustain Dev 37:1–27. doi: 10.1007/s13593-017-0421-2 CrossRefGoogle Scholar
  14. Embrapa (1997) Manual de metodos de análise de solo, 2nd edn. Embrapa-CNPS, Rio de JaneiroGoogle Scholar
  15. Frazão LA, Paustian K, Cerri CEP, Cerri CC (2013) Soil carbon stocks and changes after oil palm introduction in the Brazilian Amazon. Glob Change Biol Bioenergy 5:384–390. doi: 10.1111/j.1757-1707.2012.01196.x CrossRefGoogle Scholar
  16. Frazão LA, Paustian K, Cerri CEP, Cerri CC (2014) Soil carbon stocks under oil palm plantations in Bahia State, Brazil. Biomass Bioenerg 62:1–7. doi: 10.1016/j.biombioe.2014.01.031 CrossRefGoogle Scholar
  17. Gama-Rodrigues EF, Gama-Rodrigues AC, Nair PKR (2011) Soil carbon sequestration in cacao agroforestry systems: a case study from Bahia, Brazil. Carbon sequestration potential of agroforestry systems. Springer, Dordrecht, pp 85–99CrossRefGoogle Scholar
  18. García-Oliva F, Lancho JFG, Montaño NM, Islas P (2006) Soil carbon and nitrogen dynamics followed by a forest-to-pasture conversion in Western Mexico. Agrofor Syst 66:93–100. doi: 10.1007/s10457-005-2917-z CrossRefGoogle Scholar
  19. Häger A (2012) The effects of management and plant diversity on carbon storage in coffee agroforestry systems in Costa Rica. Agrofor Syst 86:159–174. doi: 10.1007/s10457-012-9545-1 CrossRefGoogle Scholar
  20. Haron K, Brookes PC, Anderson JM, Zakaria ZZ (1998) Microbial biomass and soil organic matter dynamics in oil palm (Elaeis guineensis Jacq.) plantations, West Malaysia. Soil Biol Biochem 30:547–552CrossRefGoogle Scholar
  21. Higuchi N, Santos J, Ribeiro RJ, Minette L, Biot Y (1998) Biomassa da parte aérea da vegetação de floresta tropical úmida de terra-firme da Amazônia Brasileira. Acta Amazonica 28:153–165CrossRefGoogle Scholar
  22. Hulvey KB, Hobbs RJ, Standish RJ et al (2013) Benefits of tree mixes in carbon plantings. Nat Clim Change 3:869–874. doi: 10.1038/nclimate1862 CrossRefGoogle Scholar
  23. IPCC (2016) Climate change 2014: mitigation of climate change. Cambridge University Press, CambridgeGoogle Scholar
  24. Jacobi J, Andres C, Schneider M et al (2013) Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agrofor Syst 88:1117–1132. doi: 10.1007/s10457-013-9643-8 CrossRefGoogle Scholar
  25. Jourdan C, Rey H (1997) Architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. Plant Soil 189:33–48CrossRefGoogle Scholar
  26. Jourdan C, Michaux-Ferrière N, Perbal G (2000) Root system architecture and gravitropism in the oil palm. Ann Bot 85:861–868. doi: 10.1006/anbo.2000.1148 CrossRefPubMedGoogle Scholar
  27. Kim D-G, Kirschbaum MUF, Beedy TL (2016) Carbon sequestration and net emissions of CH4 and N2O under agroforestry: synthesizing available data and suggestions for future studies. Agr Ecosyst Environ 226:65–78. doi: 10.1016/j.agee.2016.04.011 CrossRefGoogle Scholar
  28. Law MC, Balasundram SK, Husni MHA et al (2009) Spatial variability of soil organic carbon in oil palm. Int J Soil Sci 4:93–103CrossRefGoogle Scholar
  29. Leuschner C, Moser G, Hertel D et al (2013) Conversion of tropical moist forest into cacao agroforest: consequences for carbon pools and annual C sequestration. Agrofor Syst 87:1173–1187. doi: 10.1007/s10457-013-9628-7 CrossRefGoogle Scholar
  30. Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review. Agron Sustain Dev 34:443–454. doi: 10.1007/s13593-014-0212-y CrossRefGoogle Scholar
  31. Luedeling E, Kindt R, Huth NI, Koenig K (2014) Agroforestry systems in a changing climate — challenges in projecting future performance. Curr Opin Environ Sustain 6:1–7. doi: 10.1016/j.cosust.2013.07.013 CrossRefGoogle Scholar
  32. MacDicken KG (1997) A guide to monitoring carbon storage in forestry and agroforestry projects. Winrock International Institute for Agricultural DevelopmenGoogle Scholar
  33. Ministério do Meio Ambiente (2010) Brazil launches national program for sustainable palm oil productionGoogle Scholar
  34. Moradi A, Teh CBS, Goh KJ et al (2014) Decomposition and nutrient release temporal pattern of oil palm residues. Ann Appl Biol 164:208–219. doi: 10.1111/aab.12094 CrossRefGoogle Scholar
  35. Nair PKR (1993) An introduction to agroforestry. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  36. Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23. doi: 10.1002/jpln.200800030 CrossRefGoogle Scholar
  37. Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Chapter five—carbon sequestration in agroforestry systems, 1st edn. Elsevier, New YorkGoogle Scholar
  38. Negash M, Starr M (2013) Litterfall production and associated carbon and nitrogen fluxes of seven woody species grown in indigenous agroforestry systems in the south-eastern Rift Valley escarpment of Ethiopia. Nutr Cycl Agroecosyst 97:29–41. doi: 10.1007/s10705-013-9590-9 CrossRefGoogle Scholar
  39. Negash M, Starr M (2015) Biomass and soil carbon stocks of indigenous agroforestry systems on the south-eastern Rift Valley escarpment, Ethiopia. Plant Soil 393:95–107. doi: 10.1007/s11104-015-2469-6 CrossRefGoogle Scholar
  40. Nelson PN, Webb MJ, Banabas M et al (2014) Methods to account for tree-scale variability in soil- and plant-related parameters in oil palm plantations. Plant Soil 374:459–471. doi: 10.1007/s11104-013-1894-7 CrossRefGoogle Scholar
  41. Oelbermann M, Paul Voroney R, Gordon AM (2004) Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agric Ecosyst Environ 104:359–377. doi: 10.1016/j.agee.2004.04.001 CrossRefGoogle Scholar
  42. Pacheco NA, Bastos TX (2008) Freqüência diária de chuva em Tomé-Açu. PA, Sao PauloGoogle Scholar
  43. Pérez-Flores J, Pérez AA, Suárez YP et al (2017) Leaf litter and its nutrient contribution in the cacao agroforestry system. Agrofor Syst. doi: 10.1007/s10457-017-0096-3 Google Scholar
  44. Porro R, Miller RP, Tito MR et al (2012) Agroforestry in the Amazon region: a pathway for balancing conservation and development. In: Nair PKR, Garrity D (eds) Agroforestry—the future of global land use. Springer, Dordrecht, pp 391–428CrossRefGoogle Scholar
  45. Roncal-Garcia S, Soto-Pinto L, Castellanos-Albores J et al (2008) Sistemas agroforestales y almacenamiento de carbono en comunidades indígenas de Chiapas. Interciencia 33:200–206Google Scholar
  46. Schnitzer AS, Dewalt SJ, Chave J (2006) Censusing and measuring lianas: a quantitative comparison of the common methods. Biotropica 38:581–591. doi: 10.1111/j.1744-7429.2006.00187.x CrossRefGoogle Scholar
  47. Schroth G, DAngelo SA, Teixeira WG et al (2002) Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years. For Ecol Manag 163:131–150. doi: 10.1016/S0378-1127(01)00537-0 CrossRefGoogle Scholar
  48. Sierra CA, del Valle JI, Restrepo HI (2012) Total carbon accumulation in a tropical forest landscape. Carbon Balanc Manag 7:1–13CrossRefGoogle Scholar
  49. Somarriba E, Cerda R, Orozco L et al (2013) Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric Ecosyst Environ 173:46–57CrossRefGoogle Scholar
  50. Soto-Pinto L, Anzueto M, Mendoza J et al (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51. doi: 10.1007/s10457-009-9247-5 CrossRefGoogle Scholar
  51. Udawatta RP, Jose S (2012) Agroforestry strategies to sequester carbon in temperate North America. Agrofor Syst 86:225–242. doi: 10.1007/s10457-012-9561-1 CrossRefGoogle Scholar
  52. Upson MA, Burgess PJ (2013) Soil organic carbon and root distribution in a temperate arable agroforestry system. Plant Soil 373:43–58. doi: 10.1007/s11104-013-1733-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Helen Monique Nascimento Ramos
    • 1
  • Steel Silva Vasconcelos
    • 2
    Email author
  • Osvaldo Ryohei Kato
    • 2
  • Débora Cristina Castellani
    • 3
  1. 1.Graduate Program in AgronomyFederal Rural University of AmazoniaBelémBrazil
  2. 2.Embrapa Eastern AmazonBelémBrazil
  3. 3.Natura Inovação e Tecnologias de Produtos LtdaCajamarBrazil

Personalised recommendations