Root biomass variation of cocoa and implications for carbon stocks in agroforestry systems

  • Kira A. Borden
  • Luke C. N. Anglaaere
  • Stephen Adu-Bredu
  • Marney E. Isaac


Cocoa (Theobroma cacao L.) root systems are typically assumed to contribute a small portion of carbon (C) to total C stocks in cocoa agroecosystems. Yet there are almost no direct measurements of cocoa coarse root biomass to support this assumption, presumably due to the difficulty of measuring coarse roots in situ and the risk to farmers’ livelihoods. Instead, root biomass is commonly estimated using allometry based on forest data, which might not be accurate for perennial crops given their range of management conditions. In this study, we bridge conventional methods of quantifying coarse root biomass with non-destructive application of ground penetrating radar to estimate cocoa belowground biomass (BGB) and C stocks in an agroforestry system in Ghana. BGB was measured for cocoa grown with shade trees (Entandrophragma angolense or Terminalia ivorensis) and in monoculture. BGB estimates showed good accuracy, with a relative root mean square error of 7% from excavated plants. It was estimated that 15-year-old cocoa hold approximately 6.0 kg C plant−1 in coarse root biomass and have a root to shoot ratio of approximately 0.23. However, the results indicate that proportionally more biomass was allocated to roots for cocoa grown in mixture with shade trees. Plot scale estimates show that cocoa roots contributed 5.4–6.4 Mg C ha−1, representing 8–16% of C stocks in all live tree biomass (cocoa + shade trees), depending on shade tree management. Our findings illustrate a promising approach for non-destructive BGB inventories of perennial crops. It is highlighted that although commonly used pan-tropical allometric equations may broadly function in estimating BGB for cocoa, this approach assumes proportional allocation between aboveground biomass and BGB, which may translate into inaccuracies in C stock inventories across diverse cocoa agroecosystems.


Carbon inventory Coarse root Ghana Ground penetrating radar Theobroma cacao Root to shoot ratio 



Aboveground biomass measured from destructive harvesting


Aboveground biomass calculated using a species-specific allometric equation


Belowground biomass measured from destructive harvesting/excavation


Belowground biomass calculated using a generalized allometric equation


Belowground biomass estimated from ground penetrating radar geo-imagery and destructive sampling



We would like to thank the CSIR-Forestry Research Institute of Ghana, the community of South Formangso, and Kirstie Cadger for assistance in the field. We are grateful for funding support from the Natural Sciences and Engineering Research Council of Canada Discovery Grant to MEI and the Department of Geography & Planning, University of Toronto. We thank two anonymous reviewers whose valuable comments and suggestions greatly enhanced the quality of the manuscript.

Supplementary material

10457_2017_122_MOESM1_ESM.docx (74 kb)
Supplementary material 1 (DOCX 73 kb)


  1. Abou Rajab Y, Leuschner C, Barus H, Tjoa A, Hertel D (2016) Cacao cultivation under diverse shade tree cover allows high carbon storage and sequestration without yield losses. PLoS ONE 11:e0149949. doi: 10.1371/journal.pone.0149949 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andrade H, Segura M, Somarriba E, Villalobos M (2008) Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, Costa Rica. Agroforestería en las Américas 46:45–50Google Scholar
  3. Anglaaere LCN, Cobbina J, Sinclair FL, McDonald MA (2011) The effect of land use systems on tree diversity: farmer preference and species composition of cocoa-based agroecosystems in Ghana. Agrofor Syst 81:249–265. doi: 10.1007/s10457-010-9366-z CrossRefGoogle Scholar
  4. Asare R, Ræbild A (2016) Tree diversity and canopy cover in cocoa systems in Ghana. New For 47:287–302. doi: 10.1007/s11056-015-9515-3 CrossRefGoogle Scholar
  5. Bengough A, Castrignano A, Pagès L, van Noordwijk M (2000) Sampling strategies, scaling, and statistics. In: Smit A, Benegough A, Engels C, van Noordwijk M, Pellerin S, van de Geijn SC (eds) Root methods A handbook. Springer, Berlin, pp 147–173CrossRefGoogle Scholar
  6. Borden KA, Isaac ME, Thevathasan NV, Gordon AM, Thomas SC (2014) Estimating coarse root biomass with ground penetrating radar in a tree-based intercropping system. Agrofor Syst 88:657–669. doi: 10.1007/s10457-014-9722-5 CrossRefGoogle Scholar
  7. Butnor JR, Samuelson LJ, Stokes TA, Johnsen KH, Anderson PH, González-Benecke CA (2015) Surface-based GPR underestimates below-stump root biomass. Plant Soil 402:47–62. doi: 10.1007/s11104-015-2768-y CrossRefGoogle Scholar
  8. Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11. doi: 10.1007/s004420050201 CrossRefPubMedGoogle Scholar
  9. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. doi: 10.1007/s00442-005-0100-x CrossRefPubMedGoogle Scholar
  10. Deans J, Moran J, Grace J (1996) Biomass relationships for tree species in regenerating semi-deciduous tropical moist forest in Cameroon. For Ecol Manag 88:215–225CrossRefGoogle Scholar
  11. Dixon RK (1995) Agroforestry systems: sources of sinks of greenhouse gases? Agrofor Syst 31:99–116. doi: 10.1007/BF00711719 CrossRefGoogle Scholar
  12. Djomo AN, Ibrahima A, Saborowski J, Gravenhorst G (2010) Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. For Ecol Manag 260:1873–1885. doi: 10.1016/j.foreco.2010.08.034 CrossRefGoogle Scholar
  13. FAO (2013) FAOSTAT Online databse. Accessed 1 Dec 2016
  14. Guo L, Chen J, Cui X, Fan B, Lin H (2013) Application of ground penetrating radar for coarse root detection and quantification: a review. Plant Soil 362:1–23. doi: 10.1007/s11104-012-1455-5 CrossRefGoogle Scholar
  15. Henry M, Picard N, Trotta C, Manlay RJ, Valentini R, Bernoux M, Saint-André L (2011) Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fenn 45:477–569. doi: 10.1055/s-2002-20437 CrossRefGoogle Scholar
  16. International Panel for Climate Change (2006) Chapter 4: Forest land. In: 2006 IPCC guidelines for national greenhouse gas inventories agricultureGoogle Scholar
  17. Isaac ME, Timmer VR, Quashie-Sam SJ (2007a) Shade tree effects in an 8-year-old cocoa agroforestry system: biomass and nutrient diagnosis of Theobroma cacao by vector analysis. Nutr Cycl Agroecosyst 78:155–165. doi: 10.1007/s10705-006-9081-3 CrossRefGoogle Scholar
  18. Isaac ME, Ulzen-Appiah F, Timmer VR, Quashie-Sam SJ (2007b) Early growth and nutritional response to resource competition in cocoa-shade intercropped systems. Plant Soil 298:243–254. doi: 10.1007/s11104-007-9362-x CrossRefGoogle Scholar
  19. Isaac ME, Anglaaere LCN, Borden K, Adu-Bredu S (2014) Intraspecific root plasticity in agroforestry systems across edaphic conditions. Agric Ecosyst Environ 185:16–23. doi: 10.1016/j.agee.2013.12.004 CrossRefGoogle Scholar
  20. Jacobi J, Andres C, Schneider M, Pillco M, Calizaya P, Rist S (2014) Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agrofor Syst 88:1117–1132. doi: 10.1007/s10457-013-9643-8 CrossRefGoogle Scholar
  21. Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10. doi: 10.1007/s10457-009-9229-7 CrossRefGoogle Scholar
  22. Keller M, Palace M, Hurtt G (2001) Biomass estimation in the Tapajos National Forest, Brazil. For Ecol Manag 154:371–382. doi: 10.1016/S0378-1127(01)00509-6 CrossRefGoogle Scholar
  23. Kessler M, Hertel D, Jungkunst HF, Kluge J, Abrahamczyk S, Bos M, Buchori D, Gerold G, Gradstein SR, Köhler S, Leuschner C, Moser G, Pitopang R, Saleh S, Schulze CH, Sporn SG, Steffan-Dewenter I, Tjitrosoedirdjo SS, Tscharntke T (2012) Can joint carbon and biodiversity management in tropical agroforestry landscapes be optimized? PLoS ONE 7:e47192. doi: 10.1371/journal.pone.0047192 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manag 246:208–221. doi: 10.1016/j.foreco.2007.03.072 CrossRefGoogle Scholar
  25. Kuyah S, Dietz J, Muthuri C, Jamnadass R, Mwangi P, Coe R, Neufeldt H (2012) Allometric equations for estimating biomass in agricultural landscapes: II. Belowground biomass. Agric Ecosyst Environ 158:225–234. doi: 10.1016/j.agee.2012.05.010 CrossRefGoogle Scholar
  26. Leuschner C, Moser G, Hertel D, Erasmi S, Leitner D, Culmsee H, Schuldt B, Schwendenmann L (2013) Conversion of tropical moist forest into cacao agroforest: consequences for carbon pools and annual C sequestration. Agrofor Syst 87:1173–1187. doi: 10.1007/s10457-013-9628-7 CrossRefGoogle Scholar
  27. Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root:shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96. doi: 10.1111/j.1365-2486.2005.001043.x CrossRefGoogle Scholar
  28. Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61:281–295. doi: 10.1023/B:AGFO.0000029005.92691.79 Google Scholar
  29. Moser G, Leuschner C, Hertel D, Hölscher D, Köhler M, Leitner D, Michalzik B, Prihastanti E, Tjitrosemito S, Schwendenmann L (2010) Response of cocoa trees (Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia. Agrofor Syst 79:171–187. doi: 10.1007/s10457-010-9303-1 CrossRefGoogle Scholar
  30. Norgrove L, Hauser S (2013) Carbon stocks in shaded Theobroma cacao farms and adjacent secondary forests of similar age in Cameroon. Trop Ecol 54:15–22Google Scholar
  31. Norris K, Asase A, Collen B, Gockowksi J, Mason J, Phalan B, Wade A (2010) Biodiversity in a forest-agriculture mosaic—the changing face of West African rainforests. Biol Conserv 143:2341–2350. doi: 10.1016/j.biocon.2009.12.032 CrossRefGoogle Scholar
  32. Nygren P, Leblanc HA, Lu M, Gomez Luciano CA (2013) Distribution of coarse and fine roots of Theobroma cacao and shade tree Inga edulis in a cocoa plantation. Ann For Sci 70:229–239. doi: 10.1007/s13595-012-0250-z CrossRefGoogle Scholar
  33. Obeng EA, Aguilar FX (2015) Marginal effects on biodiversity, carbon sequestration and nutrient cycling of transitions from tropical forests to cacao farming systems. Agrofor Syst 89:19–35. doi: 10.1007/s10457-014-9739-9 CrossRefGoogle Scholar
  34. Saj S, Jagoret P, Todem Ngogue H (2013) Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon. Agrofor Syst 87:1309–1320. doi: 10.1007/s10457-013-9639-4 CrossRefGoogle Scholar
  35. Schroth G, Bede L, Paiva A, Cassano C, Amorim A, Faria D, Mariano-Neto E, Martini A, Sambuichi R, Lôbo R (2015) Contribution of agroforests to landscape carbon storage. Mitig Adapt Strateg Glob Change 20:1175–1190. doi: 10.1007/s11027-013-9530-7 CrossRefGoogle Scholar
  36. Schroth G, Jeusset A, da Silva Gomes A, Florence CT, Coelho NAP, Faria D, Läderach P (2016) Climate friendliness of cocoa agroforests is compatible with productivity increase. Mitig Adapt Strateg Glob Change 21:67–80. doi: 10.1007/s11027-014-9570-7 CrossRefGoogle Scholar
  37. Schwendenmann L, Veldkamp E, Moser G, Hölscher D, Köhler M, Clough Y, Anas I, Djajakirana G, Erasmi S, Hertel D, Leitner D, Leuschner C, Michalzik B, Propastin P, Tjo A, Tscharntke T, van Straatem O (2010) Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Glob Change Biol 16:1515–1530. doi: 10.1111/j.1365-2486.2009.02034.x CrossRefGoogle Scholar
  38. Smiley GL, Kroschel J (2008) Temporal change in carbon stocks of cocoa-gliricidia agroforests in Central Sulawesi, Indonesia. Agrofor Syst 73:219–231. doi: 10.1007/s10457-008-9144-3 CrossRefGoogle Scholar
  39. Somarriba E, Cerda R, Orozco L, Cifuentes M, Dávila H, Espin T, Mavisoy H, Ávila G, Alvarado E, Poveda V, Astorga C, Say E, Deheuvels O (2013) Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric Ecosyst Environ 173:46–57. doi: 10.1016/j.agee.2013.04.013 CrossRefGoogle Scholar
  40. Thomas SC, Martin AR (2012) Carbon content of tree tissues: a synthesis. Forests 3:332–352. doi: 10.3390/f3020332 CrossRefGoogle Scholar
  41. Vaast P, Somarriba E (2014) Trade-offs between crop intensification and ecosystem services: the role of agroforestry in cocoa cultivation. Agrofor Syst 88:947–956. doi: 10.1007/s10457-014-9762-x CrossRefGoogle Scholar
  42. Wade ASI, Asase A, Hadley P, Mason J, Ofori-Frimpong K, Preece D, Spring N, Norris K (2010) Management strategies for maximizing carbon storage and tree species diversity in cocoa-growing landscapes. Agric Ecosyst Environ 138:324–334. doi: 10.1016/j.agee.2010.06.007 CrossRefGoogle Scholar
  43. Yeboah D, Burton AJ, Storer AJ, Opuni-Frimpong E (2014) Variation in wood density and carbon content of tropical plantation tree species from Ghana. New For 45:35–52. doi: 10.1007/s11056-013-9390-8 CrossRefGoogle Scholar
  44. Zomer RJ, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, van Noordwijk M, Wang M (2016) Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Sci Rep 6:29987. doi: 10.1038/srep29987 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Kira A. Borden
    • 1
  • Luke C. N. Anglaaere
    • 2
  • Stephen Adu-Bredu
    • 2
  • Marney E. Isaac
    • 1
    • 3
  1. 1.Department of Geography & PlanningUniversity of TorontoTorontoCanada
  2. 2.Biodiversity Conservation and Ecosystem Services DivisionCSIR-Forestry Research Institute of GhanaKumasiGhana
  3. 3.Department of Physical & Environmental Sciences and Centre for Critical Development StudiesUniversity of Toronto ScarboroughTorontoCanada

Personalised recommendations