Advertisement

Agroforestry Systems

, Volume 92, Issue 2, pp 311–320 | Cite as

Afforested sites in a temperate grassland region: influence on soil properties and methane uptake

  • M. E. Priano
  • V. S. Fusé
  • S. Mestelan
  • A. M. Berkovic
  • S. A. Guzmán
  • R. Gratton
  • M. P. JuliarenaEmail author
Article

Abstract

Methane (CH4) flux at the soil-atmosphere interface (SAI) results from the balance between CH4 production (methanogenesis) and CH4 consumption (methanotrophy). The latter predominates in well-aerated mineral soils; is affected by a combination of abiotic and biotic factors, especially soil diffusivity, which depends on soil properties, and methanotroph activity. This work reports results of CH4 fluxes from afforested sites located in a temperate region of formerly native grassland in Buenos Aires Province (Argentina, Southern Hemisphere), taking a naturalized pasture as a reference. Methane concentration [CH4] and soil parameters along the soil profile were also measured to understand intersite differences in CH4 fluxes at the SAI, that could be related to vegetation cover and its influence on soil properties and therefore, on CH4 soil diffusivity. At all sites soils were CH4 sinks in the range of −3.55 to −14.39 ng CH4 m−2 s−1; the naturalized pasture presented the weakest one. Intersite differences in CH4 fluxes may result from differences observed in [CH4] profiles and CH4 diffusion coefficients. [CH4] variation could be explained mainly by differences in silt and clay content and bulk density that affect CH4 soil diffusivity. These could be the result of afforestation that seems to improve the physical and biological soil attributes linked to CH4 consumption as it meliorates its diffusivity.

Keywords

Methane concentration profile Soils properties Methane diffusion coefficient Methane fluxes in soils 

Notes

Acknowledgements

Financial support was provided by PICT 2010-1010 and PICT 2015-2540 of the National Agency for Scientific and Technological Research (ANPCyT) of the Ministry of Science, Technology and Innovation (MINCyT), Argentina.

References

  1. Bender M, Conrad R (1995) Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol Biochem 27(12):1517–1527. doi: 10.1016/0038-0717(95)00104-M CrossRefGoogle Scholar
  2. Boeckx P, Van Cleemput O, Villaralvo I (1997) Methane oxidation in soils with different textures and land use. Nutr Cycl Agroecosyst 49:91–95. doi: 10.1023/A:1009706324386 CrossRefGoogle Scholar
  3. Chaparro MAE, Bidegain JC, Sinito AM, Gogorza CSG, Jurado S (2003) Preliminary results of magnetic measurements on stream-sediments from Buenos Aires Province, Argentina. Stud Geophys Geod 47:121–145. doi: 10.1023/1022255706899 CrossRefGoogle Scholar
  4. Curry CL (2007) Modeling the soil consumption at atmospheric methane at the global scale. Glob Biogeochem Cycles 21:1–15. doi: 10.1029/2006GB002818 CrossRefGoogle Scholar
  5. Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Potter CS, Borken W, Brumme R, Butterbach-Bahl K, CrillP M, Dobbie K, Smith KA (2000) General CH4 oxidation model and comparisons of CH4 Oxidation in natural and managed systems. Glob Biogeochem Cycles 14:999–1019. doi: 10.1029/1999GB001226 CrossRefGoogle Scholar
  6. Dutaur L, Verchot LV (2007) A global inventory of the soil CH4 sink. Glob Biogeochem Cycles 21:1–9. doi: 10.1029/2006GB002734 CrossRefGoogle Scholar
  7. Hillel D (2006) Environmental soil physics. fundamentals, applications, and environmental considerations. Academic Press, New YorkGoogle Scholar
  8. Hiltbrunner D, Zimmermann S, Karbin S, Hagedorn F, Niklaus PA (2012) Increasing soil methane sink along a 120-year afforestation chronosequence is driven by soil moisture. Glob Change Biol 18:3664–3671. doi: 10.1111/j.1365-2486.2012.02798.x CrossRefGoogle Scholar
  9. Hou L-Y, Wang Z-P, Wang J-M, Wang B, Zhou S-B, Li L-H (2012) Growing season in situ uptake of atmospheric methane by desert soils in a semiarid region of northern China. Geoderma 189–190:415–422. doi: 10.1016/j.geoderma.2012.05.012 CrossRefGoogle Scholar
  10. Hütsch BW (1998) Tillage and land use effects on methane oxidation rates and their vertical profiles in soil. J Biol Fert Soils 27:284–292. doi: 10.1007/s003740050435 CrossRefGoogle Scholar
  11. INTA-CIRN (1989) Cartas de Suelos de la República Argentina, Instituto de Suelos. INTA, Buenos AiresGoogle Scholar
  12. Jensen S, Olsen RA (1998) Atmospheric methane consumption in adjacent arable and forest soil systems. Soil Biol Biochem 30:1187–1193. doi: 10.1016/S0038-0717(97)00149-1 CrossRefGoogle Scholar
  13. Kusa K, Sawamoto T, Hu R, Hatano R (2008) Comparison of the closed-chamber and gas concentration gradient methods for measurement of CO2 and N2O fluxes in two upland field soils. J Soil Sci Plant Nutr 54:777–785. doi: 10.1111/j.1747-0765.2008.00292.x CrossRefGoogle Scholar
  14. Pazos MS (1984) Relación arcilla iluvial/arcilla total en molisoles del sudeste de la Provincia de Buenos Aires. Ciencia del Suelo 2:132–136Google Scholar
  15. Pazos MS, Mestelán S (2002) Variability and soil classification of Udolls with tosca (caliche). Soil Sci Soc Am J 66:1256–1264. doi: 10.2136/sssaj2002.1256 CrossRefGoogle Scholar
  16. Prajapati P, Jacinthe PA (2014) Methane oxidation kinetics and diffusivity in soils under conventional tillage and long-term no-till. Geoderma 230–231:161–170. doi: 10.1016/j.geoderma.2014.04.013 CrossRefGoogle Scholar
  17. Priano ME (2014) Gases de efecto invernadero: Mediciones de flujo en la interfaz suelo-atmósfera y sus concentraciones en el aire del suelo. Ph.D Thesis, Universidad Nacional del centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, ArgentinaGoogle Scholar
  18. Priano ME, Fusé VS, Gere JI, Berkovic AM, Williams KE, Guzmán SA, Gratton R, Juliarena MP (2014) Tree plantations on a grassland region: effects on methane uptake by soils. Agrofor Syst 88:187–191. doi: 10.1007/s10457-013-9661-6 CrossRefGoogle Scholar
  19. Price SJ, Sherlock RR, Kelliher FM, Mc Seveny TM, Tate KR, Condron LM (2003) Pristine New Zealand forest soil is a strong methane sink. Glob Change Biol 10:16–26. doi: 10.1046/j.1529-8817.2003.00710x CrossRefGoogle Scholar
  20. Ridgwell AJ, Marshall SJ, Gregson K (1999) Consumption of atmospheric methane by soils: a process-based model. Glob Biogeochem Cycles 13:59–70. doi: 10.1029/1998GB900004 CrossRefGoogle Scholar
  21. Schoeneberger PJ, Wysocki DA, Benham EC, Broderson WD (editors) (2002) Field book for describing and sampling soils, version 2.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NEGoogle Scholar
  22. Sistema de Apoyo Metodológico a los Laboratorios de Análisis de Suelos, Agua, Vegetales y Enmiendas Orgánicas (SAMLA) (2004) Guidelines for soil testing analysis.1st Ed. SAGPyA (Secretary of Agriculture and Fisheries). CD Rom. ISBN 987-918440-8Google Scholar
  23. Smith KA, Dobbie KE, Ball BC, Bakken LR, Sitaula BK (2000) Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Glob Change Biol 6:791–803. doi: 10.1046/j.1365-2486.2000.00356.x CrossRefGoogle Scholar
  24. Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhousegases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791. doi: 10.1046/j.1365-2389.2003.00567.x CrossRefGoogle Scholar
  25. Soil Survey Laboratory Staff (SSLS) (2004) Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42. Version 2.5. USDA-NRCS, Washington, DCGoogle Scholar
  26. Soil Survey Staff (SSS) (2014) Keys to Soil Taxonomy. 12th Ed. USDA (United States Department of Agriculture)-NRCS (National Resources Conservation Services), Washington, DCGoogle Scholar
  27. Striegl RG, Proceedings of the NATO Advanced Research Workshop (1993) Diffusional limits to the consumption of atmospheric methane by soils. Chemosphere 26:715–720, ISSN 0045-6535. doi: 10.1016/0045-6535(93)90455-E
  28. Tate KR (2015) Soil methane oxidation and land-use change – from process to mitigation. Soil Biol Biochem 80:260–272. doi: 10.1016/j.soilbio.2014.10.010 CrossRefGoogle Scholar
  29. Von Fischer JC, Butters G, Duchateau PC, Thelwell RJ, Siller R (2009) In situ measures of methanotroph activity in upland soils: a reactiondiffusion model and field observation of water stress. J Geophys Res Biogeosci 114:1–12. doi: 10.1029/2008JG000731 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.CIFICEN- Centro de investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos AiresTandilArgentina
  2. 2.CRESCA - UNCPBA – Centro Regional de Estudios Sistémicos de Cadenas Agroalimentarias - Universidad Nacional del Centro de la Provincia de Buenos AiresBuenos AiresArgentina
  3. 3.Universidad Nacional del Centro de la Provincia de Buenos AiresBuenos AiresArgentina
  4. 4.CONICET – Consejo Nacional de Investigaciones Científicas y TecnológicasBuenos AiresArgentina

Personalised recommendations