Shade trees: a determinant to the relative success of organic versus conventional coffee production

Abstract

Greater understanding of the influences on long-term coffee productivity are needed to develop systems that are profitable, while maximizing ecosystem services and lowering negative environmental impacts. We examine a long-term experiment (15 years) established in Costa Rica in 2000 and compare intensive conventional (IC) coffee production under full sun with 19 agroforestry systems combining timber and service tree species with contrasting characteristics, with conventional and organic managements of different intensities. We assessed productivity through coffee yield and coffee morphological characteristics. IC had the highest productivity but had the highest yield bienniality; in the agroforestry systems productivity was similar for moderate conventional (MC) and intensive organic (IO) treatments (yield 5.3 vs. 5.0 t ha−1 year−1). Significantly lower yields were observed under shade than full sun, but coffee morphology was similar. Low input organic production (LO) declined to zero under the shade of the non-legume timber tree Terminalia amazonia but when legume tree species were chosen (Erythrina poepiggiana, Chloroleucon eurycyclum) LO coffee yield was not significantly different than for IO. For the first 6 years, coffee yield was higher under the shade of timber trees (Chloroleucon and Terminalia), while in the subsequent 7 years, Erythrina systems were more productive; presumably this is due to lower shade covers. If IC full sun plantations are not affordable or desired in the future, organic production is an interesting alternative with similar productivity to MC management and in LO systems incorporation of legume tree species is shown to be essential.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

BI:

Bienniality index

C:

Chloroleucon eurycyclum

D:

Coffee resprout diameter

E:

Erythrina poepiggiana

H:

Coffee resprout height

IC:

Intensive conventional

IO:

Intensive organic

LO:

Low organic

MC:

Moderate conventional

N:

Nitrogen

PB:

Productive branch number of coffee resprouts

TB:

Total branch number of coffee resprouts

T:

Terminalia amazonia

References

  1. Alègre C (1959) Climates et caféiers d´Arabie. Agron Trop 14:23–58

    Google Scholar 

  2. Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. In: Nair P, Latt C (eds) Directions in tropical agroforestry research, vol 53. Springer, Netherlands, pp 139–164

    Google Scholar 

  3. Blackman A, Naranjo MA (2012) Does eco-certification have environmental benefits? Organic coffee in Costa Rica. Ecol Econ 83:58–66. doi:10.1016/j.ecolecon.2012.08.001

    Article  Google Scholar 

  4. Campanha MM, Santos RHS, Freitas GB, Martinez HEP, Garcia SLR, Finger FL (2004) Growth and yield of coffee plants in agroforestry and monoculture systems in Minas Gerais, Brazil. Agrofor Syst 63(1):75–82. doi:10.1023/B:AGFO.0000049435.22512.2d

    Article  Google Scholar 

  5. Carvalho AM, Mendes AN, Carvalho GR, Botelho CE, Gonçalves FM, Ferreira AD (2010) Correlação entre crescimento e produtividade de cultivares de café em diferentes regiões de Minas Gerais, Brasil. Pesqui Agropecu Bras 45:269–275

    Article  Google Scholar 

  6. Castro-Tanzi S, Dietsch T, Urena N, Vindas L, Chandler M (2012) Analysis of management and site factors to improve the sustainability of smallholder coffee production in Tarrazú, Costa Rica. Agric Ecosyst Environ 155:172–181. doi:10.1016/j.agee.2012.04.013

    Article  Google Scholar 

  7. Cilas C, Montagnon C, Bar-Hen A (2011) Yield stability in clones of Coffea canephora in the short and medium term: longitudinal data analyses and measures of stability over time. Tree Genet Genomes 7(2):421–429. doi:10.1007/s11295-010-0344-4

    Article  Google Scholar 

  8. Coltri PP, Zullo Junior J, Dubreuil V, Ramirez GM, Pinto HS, Coral G, Lazarim CG (2015) Empirical models to predict LAI and aboveground biomass of Coffea arabica under full sun and shaded plantation: a case study of South of Minas Gerais, Brazil. Agrofor Syst 89(4):621–636. doi:10.1007/s10457-015-9799-5

    Article  Google Scholar 

  9. DaMatta FM (2004) Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crop Res 86(2–3):99–114. doi:10.1016/j.fcr.2003.09.001

    Article  Google Scholar 

  10. de Sousa KFD, Detlefsen G, de Melo Virginio Filho E, Tobar D, Casanoves F (2016) Timber yield from smallholder agroforestry systems in Nicaragua and Honduras. Agrofor Syst 90(2):207–218. doi:10.1007/s10457-015-9846-2

    Article  Google Scholar 

  11. Defrenet E, Roupsard O, van den Meersche K, Charbonnier F, Pastor Perez-Molina J, Khac E, Prieto I, Stokes A, Roumet C, Rapidel B, de Melo Virginio Filho E, Vargas VJ, Robelo D, Barquero A, Jourdan C (2016) Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age. Ann Bot. doi:10.1093/aob/mcw153

    Article  PubMed  PubMed Central  Google Scholar 

  12. Di Rienzo J, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) InfoStat. Universidad Nacional de Córdoba, Córdoba

    Google Scholar 

  13. Ehrenbergerová L, Cienciala E, Kučera A, Guy L, Habrová H (2016) Carbon stock in agroforestry coffee plantations with different shade trees in Villa Rica, Peru. Agrofor Syst 90(3):433–445. doi:10.1007/s10457-015-9865-z

    Article  Google Scholar 

  14. Gomes LdC, Cardoso IM, Mendonça EdS, Fernandes RBA, Lopes VS, Oliveira TS (2016) Trees modify the dynamics of soil 5CO26 efflux in coffee agroforestry systems. Agric For Meteorol 224:30–39. doi:10.1016/j.agrformet.2016.05.001

    Article  Google Scholar 

  15. Haggar J, Barrios M, Bolaños M, Merlo M, Moraga P, Munguia R, Ponce A, Romero S, Soto G, Staver C, de MFVirginio E (2011) Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America. Agrofor Syst 82(3):285–301. doi:10.1007/s10457-011-9392-5

    Article  Google Scholar 

  16. Lemmon PE (1956) A spherical densiometer for estimating forest overstory density. For Sci 2(4):314–320

    Google Scholar 

  17. Lin BB (2007) Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agric For Meteorol 144(1–2):85–94. doi:10.1016/j.agrformet.2006.12.009

    Article  Google Scholar 

  18. Lyngbæk AE, Muschler RG, Sinclair FL (2001) Productivity and profitability of multistrata organic versus conventional coffee farms in Costa Rica. Agrofor Syst 53(2):205–213. doi:10.1023/A:1013332722014

    Article  Google Scholar 

  19. Morais H, Marur CJ, Caramori PH, Ribeiro AM, Gomes JC (2003) Características fisiológicas e de crescimento de cafeeiro sombreado com guandu e cultivado a pleno sol, Pesqui. Agropecu Bras 38(10):1131–1137. doi:10.1590/S0100-204X2003001000001

    Article  Google Scholar 

  20. Muschler RG (2001) Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor Syst 51(2):131–139. doi:10.1023/A:1010603320653

    Article  Google Scholar 

  21. Nieters A, Grabs J, Jimenez G, Alpizar W (2015) NAMA Café Costa Rica—a tool for low-carbon development. http://www.nama-facility.org/start.html. Accessed 13 July 2015

  22. Noponen MRA, Edwards-Jones G, Haggar JP, Soto G, Attarzadeh N, Healey JR (2012) Greenhouse gas emissions in coffee grown with differing input levels under conventional and organic management. Agric Ecosyst Environ 151:6–15. doi:10.1016/j.agee.2012.01.019

    CAS  Article  Google Scholar 

  23. Noponen MRA, Haggar JP, Edwards-Jones G, Healey JR (2013) Intensification of coffee systems can increase the effectiveness of REDD mechanisms. Agric Syst 119:1–9. doi:10.1016/j.agsy.2013.03.006

    Article  Google Scholar 

  24. Nygren P, Fernández MP, Harmand J-M, Leblanc HA (2012) Symbiotic dinitrogen fixation by trees: an underestimated resource in agroforestry systems? Nutr Cycl Agroecosyst 94(2–3):123–160. doi:10.1007/s10705-012-9542-9

    Article  Google Scholar 

  25. Rodríguez D, Cure JR, Cotes JM, Gutierrez AP, Cantor F (2011) A coffee agroecosystem model: I. Growth and development of the coffee plant. Ecol Model 222(19):3626–3639. doi:10.1016/j.ecolmodel.2011.08.003

    Article  Google Scholar 

  26. Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485(7397):229–232. doi:10.1038/nature11069

    CAS  Article  PubMed  Google Scholar 

  27. Taugourdeau S, Le Maire G, Avelino J, Jones JR, Ramirez LG, Quesada MJ, Charbonnier F, Gómez-Delgado F, Harmand J-M, Rapidel B (2014) Leaf area index as an indicator of ecosystem services and management practices: an application for coffee agroforestry. Agric Ecosyst Environ 192:19–37. doi:10.1016/j.agee.2014.03.042

    Article  Google Scholar 

  28. Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48(3):619–629. doi:10.1111/j.1365-2664.2010.01939.x

    Article  Google Scholar 

  29. Tully KL, Lawrence D (2011) Closing the loop: nutrient balances in organic and conventional coffee agroforests. J Sustain Agric 35(6):671–695. doi:10.1080/10440046.2011.586599

    Article  Google Scholar 

  30. Tully KL, Lawrence D, Scanlon TM (2012) More trees less loss: nitrogen leaching losses decrease with increasing biomass in coffee agroforests. Agric Ecosyst Environ 161:137–144. doi:10.1016/j.agee.2012.08.002

    CAS  Article  Google Scholar 

  31. Vaast P, van Kanten R, Siles P, Dzib B, Franck N, Harmand JM, Genard M, others (2005) Shade: a key factor for coffee sustainability and quality. In: ASIC 2004. 20th International Conference on Coffee Science, Bangalore, India, 11–15 October 2004, pp 887–896

  32. Vaast P, Bertrand B, Perriot J, Guyot B, Genard M (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J Sci Food Agric 86(2):197–204. doi:10.1002/jsfa.2338

    CAS  Article  Google Scholar 

  33. van Oijen M, Dauzat J, Harmand J-M, Lawson G, Vaast P (2010) Coffee agroforestry systems in Central America: II. Development of a simple process-based model and preliminary results. Agrofor Syst 80(3):361–378. doi:10.1007/s10457-010-9291-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank field workers and administrative staff of CATIE, in particular Luis Romero and Luis Araya for maintaining the experiment, Carolin Winter, Benno Pokorny and two anonymous reviewers for their inspiring revisions and Sergio Vilchez M. for statistical support. The initial establishment and first ten years of the experiment were mostly financed by the Norwegian Ministry of Foreign Affairs. Particularly we appreciate the support with financial resources from Forests, Trees and Agroforestry (Consortium Research Program, CGIAR), ANR-Agrobiosphère MACACC project and the German Academic Exchange Service.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Florian Schnabel.

Appendix

Appendix

See Table 8.

Table 8 Contrast results for coffee morphology: the variables height (cm), diameter (cm), N° total branches and N° productive branches for 2002 and 2014

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schnabel, F., de Melo Virginio Filho, E., Xu, S. et al. Shade trees: a determinant to the relative success of organic versus conventional coffee production. Agroforest Syst 92, 1535–1549 (2018). https://doi.org/10.1007/s10457-017-0100-y

Download citation

Keywords

  • Agroforestry systems
  • Coffee yield
  • Coffee morphology
  • Sustainable production
  • Shade trees
  • Biennial bearing