Advertisement

Agroforestry Systems

, Volume 92, Issue 6, pp 1535–1549 | Cite as

Shade trees: a determinant to the relative success of organic versus conventional coffee production

  • Florian Schnabel
  • Elias de Melo Virginio Filho
  • Su Xu
  • Ian D. Fisk
  • Olivier Roupsard
  • Jeremy Haggar
Article

Abstract

Greater understanding of the influences on long-term coffee productivity are needed to develop systems that are profitable, while maximizing ecosystem services and lowering negative environmental impacts. We examine a long-term experiment (15 years) established in Costa Rica in 2000 and compare intensive conventional (IC) coffee production under full sun with 19 agroforestry systems combining timber and service tree species with contrasting characteristics, with conventional and organic managements of different intensities. We assessed productivity through coffee yield and coffee morphological characteristics. IC had the highest productivity but had the highest yield bienniality; in the agroforestry systems productivity was similar for moderate conventional (MC) and intensive organic (IO) treatments (yield 5.3 vs. 5.0 t ha−1 year−1). Significantly lower yields were observed under shade than full sun, but coffee morphology was similar. Low input organic production (LO) declined to zero under the shade of the non-legume timber tree Terminalia amazonia but when legume tree species were chosen (Erythrina poepiggiana, Chloroleucon eurycyclum) LO coffee yield was not significantly different than for IO. For the first 6 years, coffee yield was higher under the shade of timber trees (Chloroleucon and Terminalia), while in the subsequent 7 years, Erythrina systems were more productive; presumably this is due to lower shade covers. If IC full sun plantations are not affordable or desired in the future, organic production is an interesting alternative with similar productivity to MC management and in LO systems incorporation of legume tree species is shown to be essential.

Keywords

Agroforestry systems Coffee yield Coffee morphology Sustainable production Shade trees Biennial bearing 

Abbreviations

BI

Bienniality index

C

Chloroleucon eurycyclum

D

Coffee resprout diameter

E

Erythrina poepiggiana

H

Coffee resprout height

IC

Intensive conventional

IO

Intensive organic

LO

Low organic

MC

Moderate conventional

N

Nitrogen

PB

Productive branch number of coffee resprouts

TB

Total branch number of coffee resprouts

T

Terminalia amazonia

Notes

Acknowledgements

The authors sincerely thank field workers and administrative staff of CATIE, in particular Luis Romero and Luis Araya for maintaining the experiment, Carolin Winter, Benno Pokorny and two anonymous reviewers for their inspiring revisions and Sergio Vilchez M. for statistical support. The initial establishment and first ten years of the experiment were mostly financed by the Norwegian Ministry of Foreign Affairs. Particularly we appreciate the support with financial resources from Forests, Trees and Agroforestry (Consortium Research Program, CGIAR), ANR-Agrobiosphère MACACC project and the German Academic Exchange Service.

References

  1. Alègre C (1959) Climates et caféiers d´Arabie. Agron Trop 14:23–58Google Scholar
  2. Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. In: Nair P, Latt C (eds) Directions in tropical agroforestry research, vol 53. Springer, Netherlands, pp 139–164CrossRefGoogle Scholar
  3. Blackman A, Naranjo MA (2012) Does eco-certification have environmental benefits? Organic coffee in Costa Rica. Ecol Econ 83:58–66. doi: 10.1016/j.ecolecon.2012.08.001 CrossRefGoogle Scholar
  4. Campanha MM, Santos RHS, Freitas GB, Martinez HEP, Garcia SLR, Finger FL (2004) Growth and yield of coffee plants in agroforestry and monoculture systems in Minas Gerais, Brazil. Agrofor Syst 63(1):75–82. doi: 10.1023/B:AGFO.0000049435.22512.2d CrossRefGoogle Scholar
  5. Carvalho AM, Mendes AN, Carvalho GR, Botelho CE, Gonçalves FM, Ferreira AD (2010) Correlação entre crescimento e produtividade de cultivares de café em diferentes regiões de Minas Gerais, Brasil. Pesqui Agropecu Bras 45:269–275CrossRefGoogle Scholar
  6. Castro-Tanzi S, Dietsch T, Urena N, Vindas L, Chandler M (2012) Analysis of management and site factors to improve the sustainability of smallholder coffee production in Tarrazú, Costa Rica. Agric Ecosyst Environ 155:172–181. doi: 10.1016/j.agee.2012.04.013 CrossRefGoogle Scholar
  7. Cilas C, Montagnon C, Bar-Hen A (2011) Yield stability in clones of Coffea canephora in the short and medium term: longitudinal data analyses and measures of stability over time. Tree Genet Genomes 7(2):421–429. doi: 10.1007/s11295-010-0344-4 CrossRefGoogle Scholar
  8. Coltri PP, Zullo Junior J, Dubreuil V, Ramirez GM, Pinto HS, Coral G, Lazarim CG (2015) Empirical models to predict LAI and aboveground biomass of Coffea arabica under full sun and shaded plantation: a case study of South of Minas Gerais, Brazil. Agrofor Syst 89(4):621–636. doi: 10.1007/s10457-015-9799-5 CrossRefGoogle Scholar
  9. DaMatta FM (2004) Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crop Res 86(2–3):99–114. doi: 10.1016/j.fcr.2003.09.001 CrossRefGoogle Scholar
  10. de Sousa KFD, Detlefsen G, de Melo Virginio Filho E, Tobar D, Casanoves F (2016) Timber yield from smallholder agroforestry systems in Nicaragua and Honduras. Agrofor Syst 90(2):207–218. doi: 10.1007/s10457-015-9846-2 CrossRefGoogle Scholar
  11. Defrenet E, Roupsard O, van den Meersche K, Charbonnier F, Pastor Perez-Molina J, Khac E, Prieto I, Stokes A, Roumet C, Rapidel B, de Melo Virginio Filho E, Vargas VJ, Robelo D, Barquero A, Jourdan C (2016) Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age. Ann Bot. doi: 10.1093/aob/mcw153 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Di Rienzo J, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) InfoStat. Universidad Nacional de Córdoba, CórdobaGoogle Scholar
  13. Ehrenbergerová L, Cienciala E, Kučera A, Guy L, Habrová H (2016) Carbon stock in agroforestry coffee plantations with different shade trees in Villa Rica, Peru. Agrofor Syst 90(3):433–445. doi: 10.1007/s10457-015-9865-z CrossRefGoogle Scholar
  14. Gomes LdC, Cardoso IM, Mendonça EdS, Fernandes RBA, Lopes VS, Oliveira TS (2016) Trees modify the dynamics of soil 5CO26 efflux in coffee agroforestry systems. Agric For Meteorol 224:30–39. doi: 10.1016/j.agrformet.2016.05.001 CrossRefGoogle Scholar
  15. Haggar J, Barrios M, Bolaños M, Merlo M, Moraga P, Munguia R, Ponce A, Romero S, Soto G, Staver C, de MFVirginio E (2011) Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America. Agrofor Syst 82(3):285–301. doi: 10.1007/s10457-011-9392-5 CrossRefGoogle Scholar
  16. Lemmon PE (1956) A spherical densiometer for estimating forest overstory density. For Sci 2(4):314–320Google Scholar
  17. Lin BB (2007) Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agric For Meteorol 144(1–2):85–94. doi: 10.1016/j.agrformet.2006.12.009 CrossRefGoogle Scholar
  18. Lyngbæk AE, Muschler RG, Sinclair FL (2001) Productivity and profitability of multistrata organic versus conventional coffee farms in Costa Rica. Agrofor Syst 53(2):205–213. doi: 10.1023/A:1013332722014 CrossRefGoogle Scholar
  19. Morais H, Marur CJ, Caramori PH, Ribeiro AM, Gomes JC (2003) Características fisiológicas e de crescimento de cafeeiro sombreado com guandu e cultivado a pleno sol, Pesqui. Agropecu Bras 38(10):1131–1137. doi: 10.1590/S0100-204X2003001000001 CrossRefGoogle Scholar
  20. Muschler RG (2001) Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor Syst 51(2):131–139. doi: 10.1023/A:1010603320653 CrossRefGoogle Scholar
  21. Nieters A, Grabs J, Jimenez G, Alpizar W (2015) NAMA Café Costa Rica—a tool for low-carbon development. http://www.nama-facility.org/start.html. Accessed 13 July 2015
  22. Noponen MRA, Edwards-Jones G, Haggar JP, Soto G, Attarzadeh N, Healey JR (2012) Greenhouse gas emissions in coffee grown with differing input levels under conventional and organic management. Agric Ecosyst Environ 151:6–15. doi: 10.1016/j.agee.2012.01.019 CrossRefGoogle Scholar
  23. Noponen MRA, Haggar JP, Edwards-Jones G, Healey JR (2013) Intensification of coffee systems can increase the effectiveness of REDD mechanisms. Agric Syst 119:1–9. doi: 10.1016/j.agsy.2013.03.006 CrossRefGoogle Scholar
  24. Nygren P, Fernández MP, Harmand J-M, Leblanc HA (2012) Symbiotic dinitrogen fixation by trees: an underestimated resource in agroforestry systems? Nutr Cycl Agroecosyst 94(2–3):123–160. doi: 10.1007/s10705-012-9542-9 CrossRefGoogle Scholar
  25. Rodríguez D, Cure JR, Cotes JM, Gutierrez AP, Cantor F (2011) A coffee agroecosystem model: I. Growth and development of the coffee plant. Ecol Model 222(19):3626–3639. doi: 10.1016/j.ecolmodel.2011.08.003 CrossRefGoogle Scholar
  26. Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485(7397):229–232. doi: 10.1038/nature11069 CrossRefPubMedGoogle Scholar
  27. Taugourdeau S, Le Maire G, Avelino J, Jones JR, Ramirez LG, Quesada MJ, Charbonnier F, Gómez-Delgado F, Harmand J-M, Rapidel B (2014) Leaf area index as an indicator of ecosystem services and management practices: an application for coffee agroforestry. Agric Ecosyst Environ 192:19–37. doi: 10.1016/j.agee.2014.03.042 CrossRefGoogle Scholar
  28. Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48(3):619–629. doi: 10.1111/j.1365-2664.2010.01939.x CrossRefGoogle Scholar
  29. Tully KL, Lawrence D (2011) Closing the loop: nutrient balances in organic and conventional coffee agroforests. J Sustain Agric 35(6):671–695. doi: 10.1080/10440046.2011.586599 CrossRefGoogle Scholar
  30. Tully KL, Lawrence D, Scanlon TM (2012) More trees less loss: nitrogen leaching losses decrease with increasing biomass in coffee agroforests. Agric Ecosyst Environ 161:137–144. doi: 10.1016/j.agee.2012.08.002 CrossRefGoogle Scholar
  31. Vaast P, van Kanten R, Siles P, Dzib B, Franck N, Harmand JM, Genard M, others (2005) Shade: a key factor for coffee sustainability and quality. In: ASIC 2004. 20th International Conference on Coffee Science, Bangalore, India, 11–15 October 2004, pp 887–896Google Scholar
  32. Vaast P, Bertrand B, Perriot J, Guyot B, Genard M (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J Sci Food Agric 86(2):197–204. doi: 10.1002/jsfa.2338 CrossRefGoogle Scholar
  33. van Oijen M, Dauzat J, Harmand J-M, Lawson G, Vaast P (2010) Coffee agroforestry systems in Central America: II. Development of a simple process-based model and preliminary results. Agrofor Syst 80(3):361–378. doi: 10.1007/s10457-010-9291-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Centro Agronómico Tropical de Investigación y Enseñanza, CATIETurrialbaCosta Rica
  2. 2.Chair of Silviculture, Faculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
  3. 3.University of NottinghamSutton BoningtonUK
  4. 4.UMR Eco&Sols (Ecologie Fonctionnelle & Biogéochimie des Sols et des Agro-écosystèmes)CIRADMontpellier Cedex 2France
  5. 5.Natural Resources InstituteUniversity of GreenwichKentUK

Personalised recommendations