Temperate agroforestry research: considering multifunctional woody polycultures and the design of long-term field trials

Abstract

The many benefits of agroforestry are well-documented, from ecological functions such as biodiversity conservation and water quality improvement, to cultural functions including aesthetic value. In North American agroforestry, however, little emphasis has been placed on production capacity of the woody plants themselves, taking into account their ability to transform portions of the landscape from annual monoculture systems to diversified perennial systems capable of producing fruits, nuts, and timber products. In this paper, we introduce the concept of multifunctional woody polycultures (MWPs) and consider the design of long-term experimental trials for supporting research on agroforestry emphasizing tree crops. Critical aspects of long-term agroforestry experiments are summarized, and two existing well-documented research sites are presented as case studies. A new long-term agroforestry trial at the University of Illinois, “Agroforestry for Food,” is introduced as an experiment designed to test the performance of increasingly complex woody plant combinations in an alley cropping system with productive tree crops. This trial intends to address important themes of food security, climate change, multifunctionality, and applied solutions. The challenges of establishing, maintaining, and funding long-term agroforestry research trials are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Allen SC, Jose S, Nair PKR, Brecke BJ (2004a) Competition for 15N labeled nitrogen in a pecan-cotton alley cropping system in the southern United States. Plant Soil 263:151–164

    Article  CAS  Google Scholar 

  2. Allen SC, Jose S, Nair PKR, Brecke BJ, Nkedi-Kizza P (2004b) Safety net role of tree roots: experimental evidence from an alley cropping system. For Ecol Manag 192:395–407

    Article  Google Scholar 

  3. Anagnostakis SL (2012) Chestnut breeding in the United States for disease and insect resistance. Am Phytopathol Soc 96:1392–1403

    Google Scholar 

  4. Andrianarisoa KS, Dufour L, Bienaime S, Zeller B, Dupraz C (2016) The introduction of hybrid walnut trees (Juglans nigra x regia cv. NG23) into cropland reduces soil mineral N content in autumn in southern France. Agrofor Syst 90:193–205. doi:10.1007/s10457-015-9845-3

    Article  Google Scholar 

  5. Baldwin CS (1998) The influence of field windbreaks on vegetable and specialty crops. Agric Ecosyst Environ 22:159–163

    Google Scholar 

  6. Barrico L, Azul AM, Morais MC, Coutinho AP, Freitas H, Castro P (2012) Biodiversity in urban ecosystems: plants and macromycetes as indicators for conservation planning in the city of Coimbra (Portugal). Landsc Urban Plan 106:88–102. doi:10.1016/j.landurbplan.2012.02.011

    Article  Google Scholar 

  7. Benjamin TJ, Hoover WL, Seifert JR, Gillespie AR (2000) Defining competition vectors in a temperate alleycropping system in the midwestern USA: 4. The economic return of ecological knowledge. Agrofor Syst 48:79–93. doi:10.1023/a:1006367303800

    Article  Google Scholar 

  8. Bharati L, Lee KH, Isenhart TM, Schultz RC (2002) Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA. Agrofor Syst 56:249–257. doi:10.1023/a:1021344807285

    Article  Google Scholar 

  9. Blake GR, Hartge KH (1986) Bulk Density. In: Klute A (ed) Methods of soil analysis: Part 1—physical and mineralogical methods. Soil Science Society of America, Madison, pp 363–375

    Google Scholar 

  10. Boutin C, Jobin B, Belanger L, Choiniere L (2002) Plant diversity in three types of hedgerows adjacent to cropfields. Biodivers Conserv 11:1–25

    Article  Google Scholar 

  11. Bouwere H (1986) Intake rate: cylinder infiltrometer. In: Klute A (ed) Methods of soil analysis: Part 1—physical and mineralogical methods. Soil Science Society of America, Madison, pp 825–844

    Google Scholar 

  12. Brandt J, Vejre H (2004) Multifunctional landscapes—motives, concepts and perspectives. In: Brandt J, Vejre H (eds) Multifunctional landscapes Volume I: theory, value, and history. WIT Press, Boston

    Google Scholar 

  13. Button L, Elle E (2014) Wild bumble bees reduce pollination deficits in a crop mostly visited by managed honey bees. Agric Ecosyst Environ 197:255–263. doi:10.1016/j.agee.2014.08.004

    Article  Google Scholar 

  14. Cannell MGR, VanNoordwijk M, Ong CK (1996) The central agroforestry hypothesis: the trees must acquire resources that the crop would not otherwise acquire. Agrofor Syst 34:27–31. doi:10.1007/bf00129630

    Article  Google Scholar 

  15. Capik JM, Muehlbauer M, Novy A, Honig JA, Molnar TJ (2013) Eastern filbert blight-resistant Hazelnuts from Russia, Ukraine, and Poland. Hortscience 48:466–473

    Google Scholar 

  16. Cardinael R et al (2015a) Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon—a case study in a Mediterranean context. Geoderma 259:288–299

    Article  CAS  Google Scholar 

  17. Cardinael R, Mao Z, Prieto I, Stokes A, Dupraz C, Kim JH, Jourdan C (2015b) Competition with winter crops induces deeper rooting of walnut trees in a Mediterranean alley cropping agroforestry system. Plant Soil 391:219–235. doi:10.1007/s11104-015-2422-8

    Article  CAS  Google Scholar 

  18. Cernusca MM, Hunt KL, Gold M (2009) Pawpaw: production trial and after purchase survey findings. University of Missouri, Columbia

    Google Scholar 

  19. Connolly J, Wayne P, Bazzaz FA (2001) Interspecific competition in plants: how well do current methods answer fundamental questions? Am Nat 157:107–125. doi:10.1086/318631

    Article  PubMed  CAS  Google Scholar 

  20. Dale A, Galic D (2014) Breeding blight resistant American chestnut for Canada. Acta Hortic Int Chestnut Symp 1019:49–54

    Article  Google Scholar 

  21. Daloglu I, Nassauer JI, Riolo RL, Scavia D (2014) Development of a farmer typology of agricultural conservation behavior in the American Corn Belt. Agric Syst 129:93–102. doi:10.1016/j.agsy.2014.05.007

    Article  Google Scholar 

  22. Dawson T, Fry R (1998) Agriculture in nature’s image. Trends Ecol Evol 13:50–51. doi:10.1016/s0169-5347(97)01251-2

    Article  PubMed  CAS  Google Scholar 

  23. Dufour L, Metay A, Talbot G, Dupraz C (2013) Assessing light competition for cereal production in temperate agroforestry systems using experimentation and crop modelling. J Agron Crop Sci 199:217–227. doi:10.1111/jac.12008

    Article  Google Scholar 

  24. Dupraz C (1998) Adequate design of control treatments in long term agroforestry experiments with multiple objectives. Agrofor Syst 43:35–48. doi:10.1023/a:1026495002991

    Article  Google Scholar 

  25. Dupraz C, Newman SM (1997) Temperate agroforestry: the European way. In: Gordon AM, Newman SM (eds) Temperate agroforesry systems. CAB International, Wallingford, pp 181–236

    Google Scholar 

  26. Ferguson RS, Lovell ST (2014) Permaculture for agroecology: design, movement, practice, and worldview. Rev Agron Sustain Dev 34:251–274. doi:10.1007/s13593-013-0181-6

    Article  Google Scholar 

  27. Ferguson RS, Lovell ST (2015) Grassroots engagement with transition to sustainability: diversity and modes of participation in the international permaculture movement. Ecol Soc 20:19. doi:10.5751/es-08048-200439

    Article  Google Scholar 

  28. Fischbach J, Dale C (2010) Perfecting black currant production for machine harvest, vol 13. University of Wisconsin, Madison

    Google Scholar 

  29. Fixen P, Brentrup F, Bruulsema T, Garcia F, Norton R, Zingore S (2015) Nutrient/fertilizer use efficiency: measurement, current situation and trends. In: Drechsel P, Heffer P, Magen H, Mikkelsen R, Wichelns D (eds) Managing water and fertilizer for sustainable agricultural intensification. International Fertilizer Industry Association (IFA), Paris

    Google Scholar 

  30. Fulbright DW, Weidlich WH, Haufler KZ, Thomas CS, Paul CP (1983) Chestnut blight and recovering American chestnut trees in Michigan. Can J Bot 61:3164–3171

    Article  CAS  Google Scholar 

  31. Germon A, Cardinael R, Prieto I, Mao Z, Kim J, Stokes A, Dupraz C, Laclau JP, Jourdan C (2016) Unexpected phenology and lifespan of shallow and deep fine roots of walnut trees grown in a silvoarable Mediterranean agroforestry system. Plant Soil 401:409–426. doi:10.1007/s11104-015-2753-5

    Article  CAS  Google Scholar 

  32. Gold MA, Cernusca MM, Godsey LD (2006) Competitive market analysis: Chestnut producers Horttechnology 16:360–369

    Google Scholar 

  33. Hummer KE, Dale A (2010) Horticulture of Ribes. For Pathol 40:251–263

    Article  Google Scholar 

  34. Hunt KL, Gold MA, Warmund MR (2005) Chinese chestnut cultivar performance in Missouri. In: Abreu CG, Rosa E, Monteiro AA (eds) Proceedings of the third international chestnut congress. Acta Horticulturae, vol 693. International Society Horticultural Science, Leuven 1, pp 145–148

  35. Jordan N, Warner KD (2010) Enhancing the multifunctionality of US agriculture. Bioscience 60:60–66. doi:10.1525/bio.2009.60.1.10

    Article  Google Scholar 

  36. Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10. doi:10.1007/s10457-009-9229-7

    Article  Google Scholar 

  37. Jose S (2011) Managing native and non-native plant species in agroforestry. Agrofor Syst 83:101–105

    Article  Google Scholar 

  38. Jose S, Gordon AM (2008) Ecological knowledge and agroforestry design: an introduction. In: Jose S, Gordon AM (eds) Toward agroforestry design. An ecological approach. Springer, Dordrecht, pp 3–9

    Google Scholar 

  39. Jose S, Gillespie AR, Seifert JR, Mengel DB, Pope PE (2000) Defining competition vectors in a temperate alley cropping system in the midwestern USA—3. Competition for nitrogen and litter decomposition dynamics. Agrofor Sys 48:61–77. doi:10.1023/a:1006241406462

    Article  Google Scholar 

  40. Jose S, Gillespie AR, Pallardy SG (2004) Interspecific interactions in temperate agroforestry. Agrofor Syst 61–2:237–255. doi:10.1023/B:AGFO.0000029002.85273.9b

    Article  Google Scholar 

  41. Kort J (1988) Benefits of windbreaks to field and forage crops. Agr Ecosyst Environ 22–3:165–190. doi:10.1016/0167-8809(88)90017-5

    Article  Google Scholar 

  42. Kumar S, Anderson SH, Udawatta RP, Kremer R (2012) Water infiltration influenced by agroforestry and grass buffers for a grazed pasture system. Agrofor Syst 84:325–335

    Article  Google Scholar 

  43. Leakey RRB (2014) The role of trees in agroecology and sustainable agriculture in the tropics. In: VanAlfen NK (ed) Annual review of phytopathology, vol 52. Annual Reviews Inc., Palo Alto, pp 113–133

    Google Scholar 

  44. Lefroy EC (2009) Agroforestry and the functional mimicry of natural ecosystems. Agroforestry for natural resource management. CSIRO Publishing, Melbourne, pp 23–35

    Google Scholar 

  45. Lefroy EC, Hobbs RJ, O’Connor MH, Pate JS (1999) What can agriculture learn from natural ecosystems? Agrofor Syst 45:423–436

    Google Scholar 

  46. Lehmann J, Schroth G (2003) Nutrient leaching. In: Schroth G, Sinclair FL (eds) Trees, crops and soil fertility. CABI Publishing, Wallingford, pp 151–166

    Google Scholar 

  47. Lehmkuhler JW, Felton EED, Schmidt DA, Bader KJ, Garrett HE, Kerley MS (2003) Tree protection methods during the silvopastoral-system establishment in midwestern USA: cattle performance and tree damage. Agrofor Syst 59:35–42. doi:10.1023/a:1026184902984

    Article  Google Scholar 

  48. Lovell ST, Johnston DM (2009) Creating multifunctional landscapes: how can the field of ecology inform the design of the landscape? Front Ecol Environ 7:212–220. doi:10.1890/070178

    Article  Google Scholar 

  49. Macdaniels LH, Lieberman AS (1979) Tree crops—neglected source of food and forage from marginal lands. Bioscience 29:173–175. doi:10.2307/1307798

    Article  Google Scholar 

  50. Malezieux E (2012) Designing cropping systems from nature. Agron Sustain Dev 32:15–29. doi:10.1007/s13593-011-0027-z

    Article  Google Scholar 

  51. Malezieux E et al (2009) Mixing plant species in cropping systems: concepts, tools and models. Rev Agron Sustain Dev 29:43–62. doi:10.1051/agro:2007057

    Article  Google Scholar 

  52. Martin FS, van Noordwijk M (2009) Trade-offs analysis for possible timber-based agroforestry scenarios using native trees in the Philippines. Agrofor Syst 76:555–567. doi:10.1007/s10457-009-9208-z

    Article  Google Scholar 

  53. McIsaac GF, David MB, Mitchell CA (2010) Miscanthus and switchgrass production in Central Illinois: impacts on hydrology and inorganic nitrogen leaching. J Environ Qual 39:1790–1799. doi:10.2134/jeq2009.0497

    Article  PubMed  CAS  Google Scholar 

  54. Mead DJ, Willey RW (1980) The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp Agric 16:217–228

    Article  Google Scholar 

  55. Méndez VE, Lok R, Somarriba E (2001) Interdisciplinary analysis of homegardens in Nicaragua: micro-zonation, plant use and socioeconomic importance. Agrofor Syst 51:85–96

    Article  Google Scholar 

  56. Mollison B, Holmgren D, Barnhart E (1981) Permaculture one: a perennial agriculture for human settlements. International Tree Crop Institute USA, Davis

    Google Scholar 

  57. Molnar TJ, Capik JM (2012) Advances in hazelnut research in North America. Acta Hortic 940:57–65

    Article  Google Scholar 

  58. Molnar TJ, Zaurov DE, Goffreda JC, Mehlenbacher SA (2007) Survey of hazelnut germplasm from Russia and Crimea for response to eastern filbert blight. HortScience 42:51–56

    Google Scholar 

  59. Molnar TJ, Kahn PC, Ford TM, Funk CJ, Funk CR (2013) Tree crops, a permanent agriculture: concepts from the past for a sustainable future. Resources 2:457–488

    Article  Google Scholar 

  60. Mulia R, Dupraz C (2006) Unusual fine root distributions of two deciduous tree species in southern france: what consequences for modelling of tree root dynamics? Plant Soil 281:71–85. doi:10.1007/s11104-005-3770-6

    Article  CAS  Google Scholar 

  61. Nair PKR (2011) Methodological challenges in estimating carbon sequestration potential of agroforestry systems. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems: oppoortunities and challenges, vol 8., Advances in AgroforestrySpringer, Dordrecht, pp 3–16. doi:10.1007/978-94-007-1630-8_1

    Google Scholar 

  62. National Oceanic and Atmospheric Administration (2013) Regional climate trends and scenarios for the U.S. national climate assessment Vol Part 3. Climate of the Midwest. U.S. Department of Commerce, Washington

  63. Pearson C, Atucha A (2015) Agricultural experiment stations and branch stations in the United States. J Nat Resour Life Sci Educ 44:1–5

    Article  Google Scholar 

  64. Pryor SC et al. (2014) Midwest climate change impacts in the United States: The Third National Climate Assessment. In: Melillo JM, Richmond TC, Yohe GW (eds) Climate change impacts in the United States: the third national climate assessment U.S. Global Change Research Program, Washington

  65. Rhodes TK, Aguilar FX, Jose S, Gold MA (2016) Factors influencing adoption of riparian forest buffers in the Tuttle Creek Reservoir Watershed of Kansas. Agroforestry Systems In press, U.S.A

    Google Scholar 

  66. Richards BK, Stoof CR, Cary IJ, Woodbury PB (2014) Reporting on marginal lands for bioenergy feedstock production: a modest proposal. Bioenergy Res 7:1060–1062

    Article  CAS  Google Scholar 

  67. Rigueiro-Rodriguez A, Fernandez-Nunez E, Gonzalez-Hernandez P, McAdam JH, Mosquera-Losada (2009) Agroforestry systems in Europe: productive, ecological and social perspectives. Agroforestry in Europe: current status and future prospects, vol 6. Springer, Dordrecht

    Google Scholar 

  68. Sanchez-Humanes B, Espelta JM (2011) Increased drought reduces acorn production in Quercus ilex coppices: thinning mitigates this effect but only in the short term. Forestry 84:73–82. doi:10.1093/forestry/cpq045

    Article  Google Scholar 

  69. Sanchez-Humanes B, Sork VL, Espelta JM (2011) Trade-offs between vegetative growth and acorn production in Quercus lobata during a mast year: the relevance of crop size and hierarchical level within the canopy. Oecologia 166:101–110. doi:10.1007/s00442-010-1819-6

    Article  PubMed  Google Scholar 

  70. Schoeneberger MM (2009) Agroforestry: working trees for sequestering carbon on agricultural lands. Agrofor Syst 75:27–37. doi:10.1007/s10457-008-9123-8

    Article  Google Scholar 

  71. Smith JR (1950) Tree crops: a permanent agriculture. Devin-Adair, New York

    Google Scholar 

  72. Smith J, Pearce BD, Wolfe MS (2013) Reconciling productivity with protection of the environment: is temperate agroforestry the answer? Renew Agric Food Syst 28:80–92. doi:10.1017/s1742170511000585

    Article  Google Scholar 

  73. Strong NA, Jacobson MG (2005) Assessing agroforestry adoption potential utilising market segmentation: a case study in Pennsylvania. Small Scale For Econ Manag Policy 4:215–228

    Google Scholar 

  74. Stubbs M (2014) Conservation Reserve Program (CRP): status and issues. USDA, Washington

    Google Scholar 

  75. Talbot G (2011) L’intégration spatiale et temporelle du partage des ressources dans un système agroforestier noyers-céréales: une clef pour en comprendre la productivité?

  76. Talbot G, Dupraz C (2012) Simple models for light competition within agroforestry discontinuous tree stands: are leaf clumpiness and light interception by woody parts relevant factors? Agrofor Syst 84:101–116. doi:10.1007/s10457-011-9418-z

    Article  Google Scholar 

  77. Thomas AL, Byers PL, Avery JD Jr, Kaps M, Gu S (2015) Horticultural performance of eight American elderberry genotypes at three Missouri locations. In: Thomas AL (ed) Acta Horticulturae, vol 1061. International Society for Horticultural Science (ISHS), Leuven, pp 237–244

    Google Scholar 

  78. Udawatta RP, Jose S (2012) Agroforestry strategies to sequester carbon in temperate North America. Agrofor Syst 86:225–242. doi:10.1007/s10457-012-9561-1

    Article  Google Scholar 

  79. University of Missouri Center for Agroforestry (2012) Growing Chinese chestnuts in Missouri. University of Missouri, Columbia

    Google Scholar 

  80. University of Missouri Center for Agroforestry (2017) Specialty crops. University of Missouri, Columbia. http://www.centerforagroforestry.org/profit/#specialty. Accessed 26 Jan 2017

  81. Valdivia C, Barbieri C, Gold MA (2012) Between forestry and farming: policy and environmental implications of the barriers to agroforestry adoption. Can J Agric Econ 60:155–175. doi:10.1111/j.1744-7976.2012.01248.x

    Article  Google Scholar 

  82. Vanclay JK (2006) Experiment designs to evaluate inter- and intra-specific interactions in mixed plantings of forest trees. For Ecol Manag 233:366–374. doi:10.1016/j.foreco.2006.05.034

    Article  Google Scholar 

  83. Wang E et al (2002) Development of a generic crop model template in the cropping system model APSIM. Eur J Agron 18:121–140. doi:10.1016/s1161-0301(02)00100-4

    Article  Google Scholar 

  84. Wanvestraut RH, Jose S, Nair PKR, Brecke BJ (2004) Competition for water in a pecan (Carya illinoensis K. Koch)—cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. Agrofor Syst 60:167–179. doi:10.1023/B:AGFO.0000013292.29487.7a

    Article  Google Scholar 

  85. Wright GC, Storey JB, Harris MK, Sprinz PT (1990) Pre-harvest pecan yield estimation. Hortscience 25:698–700

    Google Scholar 

Download references

Acknowledgements

This material is based upon work that is supported by the Institute for Sustainability, Energy, and Environment at the University of Illinois and National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch project under ILLU-802-938.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah Taylor Lovell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lovell, S.T., Dupraz, C., Gold, M. et al. Temperate agroforestry research: considering multifunctional woody polycultures and the design of long-term field trials. Agroforest Syst 92, 1397–1415 (2018). https://doi.org/10.1007/s10457-017-0087-4

Download citation

Keywords

  • Agroecology
  • Multifunctional landscape
  • Sustainable agriculture
  • Permaculture
  • Polyculture