Advertisement

Agroforestry Systems

, Volume 91, Issue 4, pp 663–676 | Cite as

Optimal management of Cistus ladanifer shrublands for biomass and Boletus edulis mushroom production

  • María Hernández-Rodríguez
  • Pablo Martín-Pinto
  • Juan Andrés Oria-de-Rueda
  • Luis Diaz-Balteiro
Article
  • 183 Downloads

Abstract

Shrubland management has not traditionally been considered in forest planning. However, some of these forest systems can provide economic benefits due to both the use of biomass and the high production of marketable edible fungi associated with the shrub species. This is the case for Cistus ladanifer, a species widely distributed in the Mediterranean region, which produces high yields of the greatly appreciated mushroom Boletus edulis. The main objective of this study is to estimate the optimal cycle that should be adopted for the management of Mediterranean shrublands dominated by C. ladanifer in considering two outputs: C. ladanifer biomass and B. edulis production, and choosing the alternative with the highest associated monetary returns. Two different scenarios have been developed: a static scenario in which the optimal rotation of C. ladanifer shrubland considering five prescriptions including different management operations has been calculated; and a dynamic analysis, in which different management operations could be practiced over the next 25 years. Both scenarios consider biomass and mushroom picking as outputs. The results of these analyses show that the most appropriate management option is to perform a total clearing close to the end of that time interval. The results could be used to justify sound management practices in these forest systems where fungal harvesting focused on B. edulis could provide significant incomes.

Keywords

Rockroses Boletus edulis Biomass Optimal rotation Dynamic programming 

Notes

Acknowledgments

This study was partially funded by the research project AGL2012-40035-C03-02 (Ministry of Economy and Competitiveness of Spain), and by the project VA206U13 (Junta de Castilla y León). We also thank Zamora Territorial Service of the Development and Environment Department (Junta de Castilla y León) for silvicultural treatments funding. We would also like to thank Pablo Rodero and the project Enerbioscrub for the data in relation with biomass harvesting. María Hernández-Rodríguez work was supported by an FPI-UVa Grant of University of Valladolid. The work of Luis Diaz-Balteiro is part of Project AGL2011-2585, funded by the Ministry of Economy and Competitiveness of Spain. Also, thanks are given to Diana Badder for editing the English.

References

  1. Aldea J, Martínez-Peña F, Diaz-Balteiro L (2012) Integration of fungal production in forest management using a multi-criteria method. Eur J For Res 131:1991–2003. doi: 10.1007/s10342-012-0649-y CrossRefGoogle Scholar
  2. Aldea J, Martínez-Peña F, Romero C, Diaz-Balteiro L (2014) Participatory goal programming in forest management: an application integrating several ecosystem services. Forests 5:3352–3371. doi: 10.3390/f5123352 CrossRefGoogle Scholar
  3. Alfranca O, Voces R, Diaz-Balteiro L (2015) Influence of climate and economic variables on the aggregated supply of a wild edible fungi (Lactarius deliciosus). Forests 6:2324–2344. doi: 10.3390/f6072324 CrossRefGoogle Scholar
  4. Azul AM, Nunes J, Ferreira I et al (2014) Valuing native ectomycorrhizal fungi as a Mediterranean forestry component for sustainable and innovative solutions 1. Botany 92:161–171. doi: 10.1139/cjb-2013-0170 CrossRefGoogle Scholar
  5. Bastida F, Talavera S (2002) Temporal and spatial patterns of seed dispersal in two Cistus species (Cistaceae). Ann Bot 89(4):427–434. doi: 10.1093/aob/mcf065 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boa E (2004) Wild edible fungi. A global overview of their use and importance to people. Non-Wood Forest Products, RomeGoogle Scholar
  7. Bonet JA, Pukkala T, Fischer CR et al (2008) Empirical models for predicting the production of wild mushrooms in Scots pine (Pinus sylvestris L.) forests in the Central Pyrenees. Ann For Sci 65(2):206. doi: 10.1051/forest:2007089 CrossRefGoogle Scholar
  8. Borges JG, Hoganson HM (1999) Assessing the impact of management unit design and adjacency constraints on forestwide spatial conditions and timber revenues. Can J For Res 29:1764–1774. doi: 10.1139/x99-131 CrossRefGoogle Scholar
  9. Cai M, Pettenella D, Vidale E (2011) Income generation from wild mushrooms in marginal rural areas. For Policy Econ 13:221–226. doi: 10.1016/j.forpol.2010.10.001 CrossRefGoogle Scholar
  10. Day J, Symes N, Robertson P (2003) The scrub management handbook: guidance on the management of scrub on nature conservation sites. Forum of the Application of Conservation Techniques, PeterboroughGoogle Scholar
  11. de Román M, Boa E (2004) Collection, marketing and cultivation of edible fungi in Spain. Micol Apl Int 16:25–33Google Scholar
  12. Diaz-Balteiro L, Rodriguez LCE (2006) Optimal rotations on Eucalyptus plantations including carbon sequestration—a comparison of results in Brazil and Spain. For Ecol Manag 229:247–258. doi: 10.1016/j.foreco.2006.04.005 CrossRefGoogle Scholar
  13. Diaz-Balteiro L, Bertomeu M, Bertomeu M (2009) Optimal harvest scheduling in Eucalyptus plantations. A case study in Galicia (Spain). For Policy Econ 11:548–554. doi: 10.1016/j.forpol.2009.07.005 CrossRefGoogle Scholar
  14. Diaz-Balteiro L, Martell DL, Romero C, Weintraub A (2014a) The optimal rotation of a flammable forest stand when both carbon sequestration and timber are valued: a multi-criteria approach. Nat Hazards 72:375–387. doi: 10.1007/s11069-013-1013-3 CrossRefGoogle Scholar
  15. Diaz-Balteiro L, Romero C, Rodríguez L et al (2014b) Economics and management of industrial forest plantations. In: Borchers JG, Diaz-Balteiro L, McDill M, Rodriguez LCE (eds) The management of industrial forest plantations. Springer, Dordrecht, pp 121–170Google Scholar
  16. Ferreira L, Constantino MF, Borges JG, Garcia-Gonzalo J (2012) A stochastic dynamic programming approach to optimize short-rotation coppice systems management scheduling: an application to eucalypt plantations under wildfire risk in Portugal. For Sci 58:353–365. doi: 10.5849/forsci.10-084 Google Scholar
  17. García Rodríguez A, Forteza Bonnín J, Sánchez Camazano M, Prat Pérez L (1964) Los suelos de la provincia de Zamora. Instituto de Orientación y Asistencia del Oeste, SalamancaGoogle Scholar
  18. Grupo Tragsa (2015) Trabajos Forestales y Medioambientales: Rozas de matorral. Tarifas 2015 para encomiendas sujetas a impuestos. Grupo Tragsa, Madrid, pp 641–650Google Scholar
  19. Guzmán B, Vargas P (2009) Long-distance colonization of the Western Mediterranean by Cistus ladanifer (Cistaceae) despite the absence of special dispersal mechanisms. J Biogeogr 36:954–968. doi: 10.1111/j.1365-2699.2008.02040.x CrossRefGoogle Scholar
  20. Hernández-Rodríguez M, de-Miguel S, Pukkala T et al (2015a) Climate-sensitive models for mushroom yields and diversity in Cistus ladanifer scrublands. Agric For Meteorol 213:173–182. doi: 10.1016/j.agrformet.2015.07.001 CrossRefGoogle Scholar
  21. Hernández-Rodríguez M, Oria-de-Rueda JA, Pando V, Martín-Pinto P (2015b) Impact of fuel reduction treatments on fungal sporocarp production and diversity associated with Cistus ladanifer L. ecosystems. For Ecol Manag 353:10–20. doi: 10.1016/j.foreco.2015.05.007 CrossRefGoogle Scholar
  22. Hillier F, Libiermann G (1991) Introducción a la Investigación de Operaciones. McGraw-Hill, MéxicoGoogle Scholar
  23. Klauberg C, Vidal E, Rodriguez LCE, Diaz-Balteiro L (2014) Determining the optimal harvest cycle for copaíba (Copaifera spp.) oleoresin production. Agric Syst 131:116–122. doi: 10.1016/j.agsy.2014.07.007 CrossRefGoogle Scholar
  24. Klimas CA, Kainer KA, De Oliveira Wadt LH (2012) The economic value of sustainable seed and timber harvests of multi-use species: an example using Carapa guianensis. For Ecol Manag 268:81–91. doi: 10.1016/j.foreco.2011.03.006 CrossRefGoogle Scholar
  25. Martínez-Peña F, De-Miguel S, Pukkala T et al (2012) Yield models for ectomycorrhizal mushrooms in Pinus sylvestris forests with special focus on Boletus edulis and Lactarius group deliciosus. For Ecol Manag 282:63–69. doi: 10.1016/j.foreco.2012.06.034 CrossRefGoogle Scholar
  26. Mendes P, Meireles C, Vila-Viçosa C et al (2015) Best management practices to face degraded territories occupied by Cistus ladanifer shrublands—Portugal case study. Plant Biosyst 149:494–502. doi: 10.1080/11263504.2015.1040483 CrossRefGoogle Scholar
  27. Morgado JM, Tapias R, Alesso P (2005) Producción de goma bruta de jara (Cistus ladanifer L.) en el suroeste de la península ibérica. Actas 4o Congreso Forestal Español. Zaragoza, España, p 257Google Scholar
  28. Mustelier NL, Almeida MF, Cavalheiro J, Castro F (2012) Evaluation of pellets produced with undergrowth to be used as biofuel. Waste Biomass Valoriz 3:285–294. doi: 10.1007/s12649-012-9127-5 CrossRefGoogle Scholar
  29. Oria-de-Rueda JA, Martín-Pinto P, Olaizola J (2008) Bolete productivity of cistaceous scrublands in northwestern Spain. Econ Bot 62:323–330. doi: 10.1007/s12231-008-9031-x CrossRefGoogle Scholar
  30. Oria-de-Rueda JA, Olaizola J, de la Parra B (2011) Gestión selvícola y cultural de los principales hábitats micológicos de Castilla y León. In: Martínez-Peña F, Oria-de-Rueda JA, Ágreda T (coord.) Manual para la gestión del recurso micológico forestal en Castilla y León. SOMACYL-Junta de Castilla y Leon, Soria, pp 160–191Google Scholar
  31. Ortega-Martínez P, Martínez-Peña F (2008) A sampling method for estimating sporocarps production of wild edible mushrooms of social and economic interest. For Syst 17:228–237Google Scholar
  32. Palahí M, Pukkala T, Bonet JA et al (2009) Effect of the inclusion of mushroom values on the optimal management of even-aged stands of Catalonia. For Sci 55:503–511Google Scholar
  33. Peintner U, Schwarz S, Mešić A et al (2013) Mycophilic or mycophobic? Legislation and guidelines on wild mushroom commerce reveal different consumption behaviour in European countries. PLoS One. doi: 10.1371/journal.pone.0063926 PubMedPubMedCentralGoogle Scholar
  34. Pérez-Devesa M, Cortina J, Vilagrosa A, Vallejo R (2008) Shrubland management to promote Quercus suber L. establishment. For Ecol Manag 255:374–382. doi: 10.1016/j.foreco.2007.09.074 CrossRefGoogle Scholar
  35. Romero C (2012) Short communication. Economics of natural resources: in search of a unified theoretical framework. Span J Agric Res 10:29–33. doi: 10.5424/sjar/2012101-329-11 CrossRefGoogle Scholar
  36. Ruiz-Peinado R, Moreno G, Juarez E et al (2013) The contribution of two common shrub species to aboveground and belowground carbon stock in Iberian dehesas. J Arid Environ 91:22–30. doi: 10.1016/j.jaridenv.2012.11.002 CrossRefGoogle Scholar
  37. San Miguel A, Roig S, Cañellas I (2008) Fruticeticultura. Gestión de arbustedos y matorrales. In: Serrada R, Montero G, Reque JA (eds) Compendio de Selvicultura Aplicada en España. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Ministerio de Educación y Ciencia, Madrid, pp 877–907Google Scholar
  38. Soil Survey Staff (2010) Keys to soil taxonomy, 11th edn. USDA-Natural Resources Conservation Service, Washington, DCGoogle Scholar
  39. Tárrega R, Luis-Calabuig E, Alonso I (1995) Comparison of the regeneration after burning, cutting and ploughing in a Cistus ladanifer shrubland. Vegetation. doi: 10.1111/j.1442-9993.1996.tb00600.x Google Scholar
  40. Voces R, Diaz-Balteiro L, Alfranca Ó (2012) Demand for wild edible mushrooms. The case of Lactarius deliciosus in Barcelona (Spain). J For Econ 18:47–60. doi: 10.1016/j.jfe.2011.06.003 CrossRefGoogle Scholar
  41. Zotti M, Persiani AM, Ambrosio E et al (2013) Macrofungi as ecosystem resources: conservation versus exploitation. Plant Biosyst 147:219–225. doi: 10.1080/11263504.2012.753133 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • María Hernández-Rodríguez
    • 1
  • Pablo Martín-Pinto
    • 1
    • 2
  • Juan Andrés Oria-de-Rueda
    • 1
    • 3
  • Luis Diaz-Balteiro
    • 4
  1. 1.Sustainable Forest Management Research Institute UVA-INIAPalenciaSpain
  2. 2.Department of Vegetal Production and Natural ResourcesUniversity of ValladolidPalenciaSpain
  3. 3.Department of Agroforestry SciencesUniversity of ValladolidPalenciaSpain
  4. 4.Department of Forest and Environmental Engineering and ManagementTechnical University of MadridMadridSpain

Personalised recommendations