Influence of umbrella pine (Pinus pinea L.) stand type and tree characteristics on cone production

Abstract

Most umbrella pine (Pinus pinea L.) stands are managed as agroforestry systems, whose main production is fruit, due to the edible and highly nutritious kernels, and are frequently associated to natural or seeded pastures and grazing. The stands have low density, in order to enhance crown growth and fruit production. Nevertheless, cone production, both with regard to number and weight, varies greatly between stands, trees and years. In this study were selected three agroforestry systems, representative of umbrella pine stands whose main production is fruit, and one stand representative of the timber production system, where fruit is the secondary production. It was evaluated the variability in cone production as a function of the tree’s diameter at breast height and crown diameter and the individual tree’s competition status. The results indicate that stands managed in agroforestry systems with lower competition and individuals with larger diameter at breast height and crown diameter tend to produce more and heavier cones per tree. The first two principal components of the principal component analysis explain 84 % of the variance in cone production, trees’ dimensions and competition index. Tree competition status has a negative impact on production per tree.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Agrimi M, Ciancio O (1994) Le pin pignon (Pinus pinea L.). Silva Mediterranea, Comité des questions forestières méditerranéennes, Larnaca, Chipre (in French)

  2. Alemdag IS (1978) Evaluation of some competition indexes for the prediction of diameter increment in planted white spruce/by I.S. Alemdag. Forest Management Institute Information report FMR-X-108, vol Accessed from http://nla.gov.au/nla.cat-vn1928423. Forest Management Institute, Ottawa

  3. Avery TE, Burkhart HE (1994) Forest measurements, 4th edn. McGraw-Hill, New York

    Google Scholar 

  4. Bachiller CG (1995) The stone pine as producer of dried fruits. In: El pino piñonero como arbol productor de frutos secos en los paises mediterráneos, I reunion de la red de frutos secos de la FAO sobre el pino piñonero, 1995. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Foresta, pp 1–37 (in Spanish)

  5. Barbeito I, Pardos M, Calama R, Cañellas I (2008) Effect of stand structure on Stone pine (Pinus pinea L.) regeneration dynamics. Forestry 81:617–629

    Article  Google Scholar 

  6. Biging GS, Dobbertin M (1992) A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. For Sci 38:695–720

    Google Scholar 

  7. Bonari E, Bagliacca M, Ciomei D, Senesi G (1980) Raccolta dei pinoli con machine scuotitrici. Macchine e Motori Agricoli 38:41–46 (in Italian)

    Google Scholar 

  8. Boutheina A, El Aouni MH, Balandier P (2013) Influence of stand and tree attributes and silviculture on cone and seed productions in forests of Pinus pinea L. in northern Tunisia. Options Méditerranéennes Série A. Séminaires Méditerranéens 105:9–14

    Google Scholar 

  9. Brauer D, Ares A, Reid W, Thomas A, Slusher JP (2006) Nut-yield variations and yield–diameter relationships in open-canopy black walnut trees in southern USA. Agrofor Syst 67:63–72

    Article  Google Scholar 

  10. Burkhart HE, Tomé M (2012) Modeling forest trees and stands. Springer Science & Business Media, Dordrecht

    Google Scholar 

  11. Calama R, Montero G (2007) Cone and seed production from stone pine (Pinus pinea L.) stands in Central Range (Spain). Eur J Forest Res 126:23–35

    Article  Google Scholar 

  12. Calama R, Gordo FJ, Mutke S, Montero G (2008) An empirical ecological-type model for predicting stone pine (Pinus pinea L.) cone production in the Northern Plateau (Spain). For Ecol Manage 255:660–673

    Article  Google Scholar 

  13. Calama R, Mutke S, Tomé J, Gordo J, Montero G, Tomé M (2011) Modelling spatial and temporal variability in a zero-inflated variable: the case of stone pine (Pinus pinea L.) cone production. Ecol Model 222:606–618

    Article  Google Scholar 

  14. Carneiro AN, d’Alpuim MSH, Carvalho MAV (2007) Manual Ilustrado de Enxertia do Pinheiro Manso. Estação Florestal Nacional, Oeiras (in Portuguese)

  15. Castro-García S, Blanco-Roldán GL, Gil-Ribes JA (2012) Vibrational and operational parameters in mechanical cone harvesting of stone pine (Pinus pinea L.). Biosyst Eng 112:352–358

    Article  Google Scholar 

  16. Costa R, Evaristo I, Batista D, Afonso S, Carrasquinho I, Santos L, Sousa E, Inácio L, Bonifácio L, Capelo J, Gomes JA, Carvalho MAV, Alpuim M (2008) Condução de Povoamentos de Pinheiro Manso e Características Nutricionais do Pinhão. Instituto Nacional dos Recursos Biológicos, Oeiras (in Portuguese)

    Google Scholar 

  17. Eichhorn MP, Paris P, Herzog F, Incoll LD, Liagre F, Mantzanas K, Mayus M, Moreno G, Papanastasis VP, Pilbeam DJ, Pisanelli A, Dupraz C (2006) Silvoarable systems in Europe: past, present and future prospects. Agrofor Syst 67:29–50

    Article  Google Scholar 

  18. Evaristo I, Tenreiro R, Costa R (2008) Caracterização de Parâmetros Biométricos e de Ácidos Gordos em Pinhões de Populações Portuguesas de Pinus pinea L. Silva Lusitana 16:1–19 (in Portuguese)

    Google Scholar 

  19. Ganatsas P, Tsakaldimi M, Thanos C (2008) Seed and cone diversity and seed germination of Pinus pinea in Strofylia Site of the Natura 2000 Network. Biodivers Conserv 17:2427–2439

    Article  Google Scholar 

  20. Gonçalves AC, Pommerening A (2012) Spatial dynamics of cone production in Mediterranean climates: a case study of Pinus pinea L. in Portugal. For Ecol Manage 266:83–93

    Article  Google Scholar 

  21. Harmer R (1994) Natural regeneration of broadleaved trees in Britain: II Seed production and predation. Forestry 67:275–286

    Article  Google Scholar 

  22. Harmer R (1995) Natural regeneration of broadleaved trees in Britain: III. Germination and establishment. Forestry 68:1–9

    Article  Google Scholar 

  23. IBM Corp (2012) IBM SPSS Statistics for Windows (Version 21.0). IBM Corp, Armonk

  24. IFN5 (2010) Inventário Florestal Nacional. IFN5 2005–2006. Autoridade Florestal Nacional, Lisboa (in Portuguese)

    Google Scholar 

  25. Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis, 6th edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  26. Jose S, Gillespie AR, Pallardy SG (2004) Interspecific interactions in temperate agroforestry. Agrofor Syst 61:237–255

    Google Scholar 

  27. Lamien N, Tigabu M, Guinko S, Oden PC (2007) Variations in dendrometric and fruiting characters of Vitellaria paradoxa populations and multivariate models for estimation of fruit yield. Agrofor Syst 69:1–11

    Article  Google Scholar 

  28. Lusk JJ, Swihart RK, Goheen JR (2007) Correlates of interspecific synchrony and interannual variation in seed production by deciduous trees. For Ecol Manage 242:656–670

    Article  Google Scholar 

  29. Mencuccini M, Piussi P, Zanzi Sulli A (1995) Thirty years of seed production in a subalpine Norway spruce forest: patterns of temporal and spatial variation. For Ecol Manage 76:109–125

    Article  Google Scholar 

  30. Montero-González G, Candela-Plaza JA, Rodríguez-Navarro A (2004) El Pino piñonero (Pinus pinea L.) en Andalucía: ecología, distribución y selvicultura. Junta de Andalucia, Seville, Spain (in Spanish)

  31. Moravie MA, Durand M, Houllier F (1999) Ecological meaning and predictive ability of social status, vigour and competition indices in a tropical rain forest (India). For Ecol Manage 117:221–240

    Article  Google Scholar 

  32. Mutke S, Gordo J, Gil L (2005) Variability of Mediterranean Stone pine cone production: yield loss as response to climate change. Agric For Meteorol 132:263–272

    Article  Google Scholar 

  33. Mutke S, Calama R, González-Martínez SC, Montero G, Gordo FJ, Bono D, Gil L (2011) Mediterranean stone pine: botany and horticulture. In: Janick J (ed) Horticultural reviews (vol 39). Wiley, Hoboken, pp 153–201

  34. Nergiz C, Dönmez İ (2004) Chemical composition and nutritive value of Pinus pinea L. Seeds. Food Chem 86:365–368

    CAS  Article  Google Scholar 

  35. Nerlich K, Graeff-Hönninger S, Claupein W (2013) Agroforestry in Europe: a review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agrofor Syst 87:475–492

    Article  Google Scholar 

  36. Oliver CD, Larson BC (1996) Forest stand dynamics. Update editions. Wiley, New York

    Google Scholar 

  37. Pedersen RØ, Bollandsås OM, Gobakken T, Næsset E (2012) Deriving individual tree competition indices from airborne laser scanning. For Ecol Manage 280:150–165

    Article  Google Scholar 

  38. Pommerening A, Stoyan D (2006) Edge-correction needs in estimating indices of spatial forest structure. Can J For Res 36:1723–1739

    Article  Google Scholar 

  39. Pretzsch H (2009) Forest dynamics, growth and yield: from measurement to model. Springer, Berlin

    Google Scholar 

  40. Pretzsch H, Biber P, Ďurský J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manage 162:3–21

    Article  Google Scholar 

  41. Pukkala T, Kolström T (1987) Competition indices and the prediction of radial growth in Scots pine. Silva Fennica 21:55–67

    Google Scholar 

  42. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  43. Reisner Y, de Filippi R, Herzog F, Palma J (2007) Target regions for silvoarable agroforestry in Europe. Ecol Eng 29:401–418

    Article  Google Scholar 

  44. Rodrigues A, Silva GL, Casquilho M, Freire J, Carrasquinho I, Tomé M (2014) Linear mixed modelling of cone production for Stone Pine in Portugal. Silva Lusitana 22:1–27 [in Portuguese]

    Google Scholar 

  45. Saraiva I (1997) O pinhão. Litexa Editora, Lda., Lisboa (in Portuguese)

  46. Shah DA, Madden LV (2004) Nonparametric analysis of ordinal data in designed factorial experiments. Phytopathology 94:33–43

    CAS  Article  PubMed  Google Scholar 

  47. Sheskin DJ (2007) Handbook of parametric and nonparametric statistical procedures. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  48. Sirois L (2000) Spatiotemporal variation in black spruce cone and seed crops along a boreal forest: tree line transect. Can J For Res 30:900–909

    Article  Google Scholar 

  49. SNIRH (2015) Sistema Nacional de Informação de Recursos Hídricos, Agencia portuguesa do ambiente, Governo de Portugal, Ministério do Ambiente, Ordenamento do Território e Energia. http://snirh.apambiente.pt/index.php?idMain=2&idItem=1. Accessed 12 Feb 2015 (in Portuguese)

  50. Szwagrzyk J, Szewczyk J, Maciejewski Z (2012) Shade-tolerant tree species from temperate forests differ in their competitive abilities: a case study from Roztocze, south-eastern Poland. For Ecol Manage 282:28–35

    Article  Google Scholar 

  51. Tomé M, Burkhart HE (1989) Distance-dependent competition measures for predicting growth of individual trees. For Sci 35:816–831

    Google Scholar 

  52. Wright SP (1992) Adjusted P-values for simultaneous inference. Biometrics 48:1005–1013

    Article  Google Scholar 

  53. Zardo RN, Henriques RPB (2011) Growth and fruit production of the tree Caryocar brasiliense in the Cerrado of central Brazil. Agrofor Syst 82:15–23

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to all members of the Pinus pinea project team, to Companhia Agrícola do Monte Novo, Comonte S.A., Sociedade de Agricultura de Grupo Bicha and Filhos and to the Autoridade Florestal Nacional where trials were settled, and to the team that carried out the laboratory work. The work was funded by PROGRAMA AGRO 200 (Project AGRO/200/2001: ‘‘Colheita mecânica da pinha (Pinus pinea L.)’’); by National Funds through FCT - Foundation for Science and Technology under the Project UID/AGR/00115/2013; and by the FCT, Portugal, under the project UID/MAT/04674/2013 (CIMA). Neda Bakhshandegi is gratefully acknowledged for the English revision.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana Cristina Gonçalves.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, A.C., Afonso, A., Pereira, D.G. et al. Influence of umbrella pine (Pinus pinea L.) stand type and tree characteristics on cone production. Agroforest Syst 91, 1019–1030 (2017). https://doi.org/10.1007/s10457-016-9975-2

Download citation

Keywords

  • Bivariate correlation
  • Competition index
  • Principal component analysis
  • Tree dimension