Skip to main content

Advertisement

Log in

Characterization of Faidherbia albida (Del.) A. Chev. population in agroforestry parklands in the highlands of Northern Ethiopia: impact of conservation, environmental factors and human disturbances

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Concerns about sustainable management and conservation of multipurpose trees in their habitat have led to increased number of studies on the ecological characterization of their population. Such knowledge on Faidherbia albida, the most used tree in agroforestry parklands in Ethiopia, is limited. F. albida population was characterized in and compared between two agroforests having different conservation status in Northern Ethiopia. Population structural parameters along with environmental factors and human activities were assessed in 42 randomly installed plots using a transect method. Size class distribution was used to describe and analyze the species long-term population dynamics. Adult density was almost three times higher in Zongi agroforest (19.9 ± 2.9 trees ha−1) where the species has been conserved and managed for longer time compared to Abraha-atsbeha agroforest (7.9 ± 2.5 trees ha−1). The same trend was observed for tree morphological parameters which were significantly higher at Zongi than Abraha-atsbeha. However, size class distributions coefficient of skewness and the median diameter indicated a declining and vulnerable population at Zongi and an increasing population at Abraha-atsbeha. Species population characteristics were influenced by environmental factors such as altitude, stone cover, erosion severity, slope, and human-related disturbances including land use, fodder harvesting, distance away from the center of the village and proximity of household to the plots. The study confirms the impact of conservation, environmental factors and human disturbances on shaping F. albida population and recommends the consideration of the trade-offs between them to design effective conservation and management strategies to sustain F. albida agroforests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alam M, Olivier A, Paquette A, Dupras J, Revéret J-P, Messier C (2013) A general framework for the quantification and valuation of ecosystem services of tree-based intercropping systems. Agrofor Syst 88:679–691. doi:10.1007/s10457-014-9681-x

    Article  Google Scholar 

  • Assogbadjo AE, Sinsin B, Van Damme P (2005) Caractetères morphologiques et production des capsules de baobab (Adansonia digitata L.) au Benin. Fruits 60:327–340

    Article  Google Scholar 

  • Bayala J, Teklehaimanot Z, Ouédraogo SJ (2002) Millet production under pruned tree crowns in a parkland system in Burkina Faso. Agrofor Syst 54:203–214

    Article  Google Scholar 

  • Bayala J, Sileshi GW, Coe R, Kalinganire A, Tchoundjeu Z, Sinclair F, Garrity D (2012) Cereal yield response to conservation agriculture practices in drylands of West Africa: a quantitative synthesis. J Arid Environ 78:13–25

    Article  Google Scholar 

  • Bekele-Tesemma A (2007) Useful trees of Ethiopia: identification, propagation and management in 17 agroecological zones. RELMA in ICRAF Project, Nairobi, p 552

    Google Scholar 

  • Bendel RB, Higgins SS, Teberg JE, Pyke DA (1989) Comparison of skewness coefficient, coefficient of variation, and Gini coefficient as inequality measures within populations. Oecol 78:394–400

    Article  Google Scholar 

  • Böhm C, Kanzler M, Freese D (2014) Wind speed reductions as influenced by woody hedgerows grown for biomass in short rotation alley cropping systems in Germany. Agrofor Syst 88:579–591. doi:10.1007/s10457-014-9700-y

    Article  Google Scholar 

  • Boko M, Niang I, Nyong A et al (2007) In climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, Van Der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 433–467

  • Bourou S, Bowe C, Diouf M, Van Damme P (2012) Ecological and human impacts on stand density and distribution of tamarind (Tamarindus indica L.) in Senegal. Afr J Ecol 50:253–265

    Google Scholar 

  • Bridget BU, Anne JB, Lungu OI (2013) Effects of Faidherbia albida on the fertility of soil in smallholder conservation agriculture systems in eastern and southern Zambia. Department of International Environment and Development Studies, Norwegian University of Life Sciences, Norway. Afr J Agric Res 8:173–183

    Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York

  • Condit R, Sukumar R, Hubbell SP, Foster RB (1998) Predicting population trends from size distribution: direct test in tropical tree community. Am Nat 152:495–509

    Article  CAS  PubMed  Google Scholar 

  • Coulibaly YN, Mulia R, Sanou J, Zombré G, Bayala J, Kalinganire A, van Noordwijk M (2014) Crop production under different rainfall and management conditions in agroforestry parkland systems in Burkina Faso: observations and simulation with WaNuLCAS model. Agrofor Syst 88:13–28. doi:10.1007/s10457-013-9651-8

    Article  Google Scholar 

  • Dawson IK, Vinceti B, Weber JC et al (2011) Climate change and tree genetic resource management: maintaining and enhancing the productivity and value of smallholder tropical agroforestry landscapes. A review. Biodivers Conserv 20:783–801

    Google Scholar 

  • De Leeuw J, Njenga M, Wagner B, Iiyama M (eds) (2014) Treesilience: an assessment of the resilience provided by trees in the drylands of Eastern Africa. ICRAF, Nairobi

    Google Scholar 

  • Engelbrecht BL, Comita RC (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447(3):80–83

    Article  CAS  PubMed  Google Scholar 

  • Fandohan B, Assogbadjo AE, Glèlè Kakai RL, Sinsin B, Van Damme P (2010) Impact of habitat type on the conservation status of tamarind (Tamarindus indica L.) populations in the W National Park of Benin. Fruits 65:11–19

    Article  Google Scholar 

  • Fandohan B, Assogbadjo AE, Glèlè RL, Sinsin B (2011) Effectiveness of a protected areas network in the conservation of Tamarindus indica (Leguminosea–Caesalpinioideae) in Benin. Afr J Ecol 49:40–50

    Article  Google Scholar 

  • Feeley JK, Davies SJ, Nur Supardi Noor MD, Kassim AR, Tan S (2007) Do current stem size distributions predict future population changes? An empirical test of intraspecific patterns in tropical trees at two spatial scales. J Trop Ecol 23:191–198

    Article  Google Scholar 

  • Gaoue OG, Ticktin T (2007) Patterns of harvesting foliage and bark from the multipurpose tree Khaya senegalensis in Benin: variation across ecological regions and its impacts on population structure. Biol Conserv 137:424–436

    Article  Google Scholar 

  • Garrity DP, Akinnifesi FK, Ajayi OC, Weldesemayat SG, Mowo JG, Kalinganire A, Larwanou M, Bayala J (2010) Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Secur 2:197–214. doi:10.1007/s12571-010-0070-7

    Article  Google Scholar 

  • Geldenhuys CJ (2010) Managing forest complexity through application of disturbance–recovery knowledge in development of silvicultural systems and ecological rehabilitation in natural forest systems in Africa. J For Res 15:3–13

    Article  Google Scholar 

  • Gijsbers HJM, Kessler JJ, Knevel MK (1994) Dynamics and natural regeneration of woody species in farmed parkland in the Sahel region (Province of Passoré) Burkina Faso. For Ecol Manag 64:1–12

    Article  Google Scholar 

  • Gouwakinnou GN, Kindomihou V, Assogbadjo AE, Sinsin B (2009) Population structure and abundance of Sclerocarya birrea (A. Rich) Hochst subsp. birrea in two contrasting land-use systems in Benin. Int J Biodivers Conserv 1(6):194–201

    Google Scholar 

  • Hadgu KM, Kooistra L, Rossing WAH, van Bruggen AHC (2009) Assessing the effect of Faidherbia albida based land use systems on barley yield at field and regional scale in the highlands of Tigray, Northern Ethiopia. Food Secur 1:337–350

    Article  Google Scholar 

  • Hadgu KM, Mowo J, Garrity DP, Sileshi G (2011) Current extent of evergreen agriculture and prospects for improving food security and environmental resilience in Ethiopia. Int J Agric Sci 1(1):006–016

    Google Scholar 

  • Kelly AB, Hardy O, Bouvet JM (2004) Temporal and spatial genetic structure in Vitellaria paradoxa (shea tree) in an agroforestry system in southern Mali. Mol Ecol 13:1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Kindeya G. (2004) Dryland agro-forestry strategy for Ethiopia. Drylands agroforestry workshop 1st-3rd September 2004. ICRAF Headquarters, Nairobi, pp 1–20

  • Koutchoukalo A, Wala K, Bayala J, Villamor GB, Dourma M, Atakpama W, Akpagana K (2015) Population structure and regeneration status of Vitellari Paradoxa (C. F. Gaertner) under different land management regimes in Atacora department, Benin. Agrofor Syst. doi:10.1007/s10457-015-9787-9

    Google Scholar 

  • Leakey RRB, Simons AJ (1998) The domestication and commercialization of indigenous trees in agroforestry for the alleviation of poverty. Agrofor Syst 38:165–176

    Article  Google Scholar 

  • Lericollais A, Milleville P (1993) La jachère dans les systèmes agro-pastoraux sereer au Sénégal. La jachère en Afrique de l’Ouest, pp 133–145

  • Meehl GA, Stocker TF, Collins WD et al (2007) Global climate projections. In Solomon SD, Qin XX, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York

  • Montagne PP (1984) Faidherbia albida: un arbre, un projet. Bois de Feu 9:15–20

    Google Scholar 

  • Nyssen J, Mitiku H, Poesen J, Deckers J, Moeyersons J (2000) Les effets du ramassage des pierres sur la perte du sol et les récoltes en Dogua Tembien, Tigré, Ethiopie. Bulletin Réseau Erosion 19:427–440

    Google Scholar 

  • Ogbazghi W (2001) The distribution and regeneration of Boswellia papyrifera (Del.) Hochst. in Eritrea. Tropical resource management papers, No. 35, ISSN 0926-9495

  • Okullo JBL, Hall JB, Obua J (2004) Leafing, flowering and fruiting of Vitellaria paradoxa subsp. nilotica in savanna parklands in Uganda. Agrofor Syst 60(1):77–91

    Article  Google Scholar 

  • Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009) Agroforestree database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya

  • Plieninger T (2007) Compatibility of livestock grazing with stand regeneration in Mediterranean holm oak parklands. J Nat Conserv 15:1–9

    Article  Google Scholar 

  • Semereab E, Philippart J, Doucet JL (2010) Evaluation de la présence de forêts à haute valeur pour la conservation dans la concession forestière attribuée à Gau Services (Cameroun) selon le concept défini par le principe du Forest Stewardship Council. Nature + asbl, Gembloux, p 57

  • Shackleton CM, Botha J, Emanuel PL (2003) Productivity and abundance of Sclerocarya birrea caffra in and around rural settlements and protected area of the bushbuckridge lowed, South Africa. For Trees Livelihoods 13:217–232

    Article  Google Scholar 

  • Slik J (2004) El Nino droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia 141:114–120

    Article  CAS  PubMed  Google Scholar 

  • Sterck FJ, Bongers F (1998) Ontogenetic changes in size, allometry, and mechanical designs of tropical rain forest trees. Am J Bot 85(2):267–272

    Article  Google Scholar 

  • Swaine MD (1997) Ecology of forest tree in Ghana. The Overseas Development Administration (ODA). Forest Service 7

  • United Nations Development Programme (2013) Abrha Weatsbha Community, Ethiopia. Equator initiative case study series, New York

  • Zomer RJ, Trabucco A, Coe R, Place F, van Noordwijk M, Xu JC (2014) Trees on farms: an update and reanalysis of agroforestry’s global extent and socio-ecological characteristics. Working Paper 179. Bogor, Indonesia: World Agroforestry Centre (ICRAF) Southeast Asia Regional Program. doi: 10.5716/WP14064.PD

Download references

Acknowledgments

Authors would like to thank the Transdisciplinary Training for Resource Efficiency and Climate Change Adaptation in Africa (TRECCAfrica) and Swedish International Development Cooperation Agency (SIDA) for their financial support. We are particularly indebted to the staff of Farmers Training Centre (FTC) of Zongi and Abraha-atsbeha, Ashenafi Hagos and Genet Hadgu for their collaboration and cooperation for the good progress of this work. We are grateful to the anonymous referees for their constructive comments on an earlier version of this manuscript. Our sincere gratitude goes to the farmers’ community of the study agroforests for their help during the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Noulekoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noulekoun, F., Birhane, E., Chude, S. et al. Characterization of Faidherbia albida (Del.) A. Chev. population in agroforestry parklands in the highlands of Northern Ethiopia: impact of conservation, environmental factors and human disturbances. Agroforest Syst 91, 123–135 (2017). https://doi.org/10.1007/s10457-016-9910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-016-9910-6

Keywords

Navigation