Skip to main content
Log in

Growth and survival of the Mayan palm Chamaedorea hooperiana in two villages of Los Tuxtlas Biosphere Reserve, Veracruz, Mexico: a comparison between primary and secondary forests

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

In the Los Tuxtlas Biosphere Reserve, Veracruz, México, managers and farmers of two communities have promoted the cultivation of Chamaedorea hooperiana amid primary forest (PF) on the assumption that this would provide viable economic income while contributing to forest sustainability. The aim of this study was to test whether or not C. hooperiana is able to grow in PF without canopy management, and to compare its growth pattern to the one observed in secondary forest (SF) (acahual) managed by farmers. The performance of C. hooperiana was evaluated for nearly a thousand days in patches of forest from two communal lands dedicated to palm extraction. The results indicate that the palms grew four to five times faster in the SF than in the PF, although the number of leaves was only about one-and-a-half times greater. Also, a different growth pattern was detected at each site in terms of plant height and length of leaves, i.e., allometric growth was negative in the PF (the length of leaves increased more slowly than the height of the palms) and positive in the SF (length of leaves increased faster than the height of the palms). It was concluded that although C. hooperiana may be defined as a shade-tolerant plant species growing best under intermediate light, seedlings will not grow under a closed canopy of PF, except at those gaps with enough light. Growing the Mayan palm under SF opens up the possibility of rehabilitating deforested areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar SA, Rosas A, Frausto JM (2001) El cultivo de palma camedor (Chamaedorea elegans): alternativa económica para el manejo de acahuales en la región de Pajapan, Veracruz. In: S A R Rodríguez (ed) Lecciones del Programa de Acción Forestal Tropical.SEMARNAT/PROAFT/CNEB/Plaza y Valdés Editores, Mexico, pp 175–189

  • Avalos G, Otárola MF, Gei MG, Sylvester O (2007) Functional analysis of palm allometry: do morphological constraints determine palm distribution across light environments? Conference Paper. doi:10.13140/2.1.1075.8727

  • Binkley D (2008) Editorial: three key points in the design of forest experiments. For Ecol Manag 255:2022–2023

    Article  Google Scholar 

  • Buda-Arango G, Trench T, Durand L (2014) El aprovechamiento de palma camedor en la Selva Lacandona, Chiapas, México. ¿Conservación con desarrollo?. Estudios Sociales, Volumen XXII, número 44, pp 200–223

  • Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Ann 6:71–80

    Article  CAS  Google Scholar 

  • Chazdon RL (1986) Light variation and carbon gain in rain forest understorey palms. J Ecol 74(4):995–1012

    Article  Google Scholar 

  • Current D, Wilsey D (2001) The market for the Chamaedorea palms in North America and Europe: opportunities for sustainable management and green marketing of the resource with improved benefits for local communities. The North American Commission for Environmental Cooperation. http://www.cinram.umn.edu/ecopalms/palm/Market_%20for_the_Chaemadorea_Palms.pdf. Accessed 29 November 2013

  • De la Torre L, Valencia R, Altamirano C, Ravnborg HM (2011) Non-timber forest products (NTFPs) derived from palms and other plants are economically and culturally important to a large part of the more than 240 million people who live in the forest areas of developing countries. Bot Rev 77(4):327–369

    Article  Google Scholar 

  • Denslow JS (1995) Disturbance and diversity in tropical rain forests: the density effect. Ecol Appl 5:962–968. doi:10.2307/2269347

    Article  Google Scholar 

  • Eccardi F (2003) La palma camedor. CONABIO. Biodiversitas 50:1–7

    Google Scholar 

  • El-Khateeb MA, El-Madaawy E, El-Attar A (2010) Effect of some biofertilizers on growth and cheimical composition of Chamaedorea elegans Mart. seedlings. J Hortic Sci Ornam Plants 2(3):123–129

    Google Scholar 

  • Etchevers J (1984) Técnicas de análisis químicos de suelos y plantas. Centro de Edafología, Colegio de posgraduados, Chapingo

    Google Scholar 

  • Gatti MG, Campanelloa P, Goldstein G (2011) Growth and leaf production in the tropical palm Euterpe edulis: light conditions versus developmental constraints. Flora 206:742–748

    Article  Google Scholar 

  • Gilman EF (2011) Chamaedorea elegans Parlor Palm. Environmental Horticulture, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. http://edis.ifas.ufl.edu. Accessed January 2014

  • Goodale UM, Berlyn GP, Gregoire TG, Tennakoon KU, Ashton MS (2014) Differences in survival and growth among tropical rain forest pioneer tree seedlings in relation to canopy openness and herbivory. Biotropica 46(2):183–194

    Article  Google Scholar 

  • Granados-Sánchez D, Hernández-García MA, López-Ríos GF, Santiago-López M (2004) El cultivo de palma camedor (chamaedorea sp.) en sistemas agroforestales de cuichapa, veracruz. Revista Fitotecnia Mexicana 27(3):233–241

    Google Scholar 

  • Grupo Mesófilo AC (2005) Palma Camedor, manual para el manejo y cultivo. GEF-UNEP MIE, Oaxaca, México

  • Gutiérrez MV, Jiménez K (2007) Crecimiento de nueve especies de palmas ornamentales cultivadas bajo un gradiente de sombra. Agronomía Costarricense 31(1):9–19

    Google Scholar 

  • Hernández-Luis R, Bautista-Gonzalez C, Bautista-Cruz LA., Sandoval-Rodríguez AP (2009) Producción y comercialización de la palma camedor en la región de la sierra santa marta, veracruz; méxico. Licenciado(a) en Gestión Intercultural para el Desarrollo. Universidad Veracruzana Intercultural, Huazuntlán Mecayapan, Veracruz

    Google Scholar 

  • Hernández-Barrios JC, Anten NPR, Ackerly DD, Martínez-Ramos M (2012) Defoliation and gender effects on fitness components in three congeneric and sympatric understorey palms. J Ecol 100:1544–1556. doi:10.1111/j.1365-2745.2012.02011.x

    Article  Google Scholar 

  • Hernández-Barrios JC, Anten NPR, Martínez-Ramos M (2015) Sustainable harvesting of non-timber forest products based on ecological and economic criteria. J Appl Ecol 52(2):389–401

    Article  Google Scholar 

  • Hodel RD (1992) Chamaedorea: diverse species in diverse habitats. Bull Inst Fr Etudes Andines 21(2):433–458

    Google Scholar 

  • Hubbell SP, Foster RB, O’brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, Loo De Lao S (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283:554–557

    Article  PubMed  CAS  Google Scholar 

  • Kilroy HA, Gorchov DL (2010) Enrichment planting of an understory palm: effect of micro-environmental factors on seedling establishment, growth, and survival. Int J Biodivers Conserv 2(5):105–113

    Google Scholar 

  • Longford NT (1993) Random coefficient models. Oxford University Press, Oxford

    Google Scholar 

  • Martini E, Roshetko JM, van Noordwijk M, Rahmanulloh A, Mulyoutami E, Joshi L, Budidarsono S (2012) Sugar palm (Arenga pinnata (Wurmb) Merr.) for livelihoods and biodiversity conservation in the orangutan habitat of Batang Toru, North Sumatra, Indonesia: mixed prospects for domestication. Agrofor Syst 86:401. doi:10.1007/s10457-011-9441-0

    Article  Google Scholar 

  • Montgomery RA, Chazdon RL (2002) Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia 131:165–174

    Article  PubMed  CAS  Google Scholar 

  • Murillo-Torrecilla FJ (2008) Los modelos multinivel como herramienta para la investigación educativa. Magis Revista Internacional de Investigación en Educación 1:45–62

    Google Scholar 

  • NOM-ECOL-059, Norma Oficial Mexicana (1994) Diario Oficial de la Federación, 16 de mayo de 1994

  • Ojeda MM, Núñez V, Sosa HR (1998) Modeling growth profiles using linear models wirh random coefficients. Agrociencia 32:169–174

    Google Scholar 

  • Page AL, Miller RH, Keeney DR (eds) (1982) Method of soil analysis, part 2, chemical and microbiological properties, 2nd edn. American Society of Agronomy, Soil Science Society of America, Madison

    Google Scholar 

  • Piñar-Álvarez Á, Nava-Tablada ME, Viñas-Oliva DK (2011) Migración y ecoturismo en la Reserva de la Biosfera de Los Tuxtlas (México). PASOS Revista de Turismo y Patrimonio Cultural 9(2):383–396

    Google Scholar 

  • Poorter L (1999) Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Funct Ecol 13:396–410

    Article  Google Scholar 

  • Popma J, Bongers F (1988) The effect of canopy gaps on growth and morphology of seedlings of rain forest species. Oecologia (Berlin) 75:625–632

    Article  CAS  Google Scholar 

  • Ramírez F (2005) La palma mayan (Chamaedorea hooperiana Hodel): situación actual y evaluación de los efectos de la cosecha de hojas en la Reserva de la Biosfera Los Tuxtlas, Veracruz. Tesis de Maestría en Ciencias Biológicas (Biología Ambiental), Universidad Nacional Autónoma de México

  • Rasbash J, Steele F, Browne JW, Goldstein H (2012) A user’s guide to MLwiN, version 2.26. Centre for Multilevel Modelling, University of Bristol, UK

  • Rebasa P (2005) Conceptos básicos del análisis de supervivencia. Cir Esp 78(4):222–230

    Article  PubMed  Google Scholar 

  • Rich PM (1986) Mechanical architecture of arborescent rain forest palms. Principes 30(3):117–131

    Google Scholar 

  • Rich PM, Clark D, Clark DA, Oberbauer SF (1993) Long-term study of solar radiation regimes in a tropical wet forest using quantum sensors and hemispherical photography. Agric For Meteorol 65:107–127

    Article  Google Scholar 

  • Russell, C.M. (2013). Resource growing conditions for indoor plants. Bailey Hortorium, Cornell University. http://ccesuffolk.org/assets/Horticulture-Leaflets/Growing-Conditions-for-Indoor-Plants.pdf. Accessed January 2014

  • Sasaki S, Mori T (1981) Responses of dipterocarp seedlings to light. Malays For 44:319–345

    Google Scholar 

  • SEMARNAT, Secretaría del Medio Ambiente y Recursos Naturales (1998) Decreto por el que se declara área natural protegida, con carácter de reserva de la biosfera, la región denominada Los Tuxtlas. Diario Oficial de la Federación, Mexico

  • Semarnat-2000 (2002) Norma Oficial Mexicana que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis (NOM-021-SEMARNAT-2000). Diario Oficial de la Federación (DOF)

  • Stanley D, Voeks R, Short L (2012) Is non-timber forest product harvest sustainable in the less developed world? A systematic review of the recent economic and ecological literature. Ethnobiol Conserv 1(9):1–39

    Google Scholar 

  • Statsoft INC (2012) Electronic statistics textbook. StatSoft, Tulsa, OK. http://www.statsoft.com/textbook/. (Printed Version): Hill T, Lewicki P (2007) STATISTICS: methods and applications. Stat Soft, Tulsa, OK

  • Svenning JC (2001) Environmental heterogeneity, recruitment limitation and the mesoscale distribution of palms in a tropical montane rain forest (Maquipucuna, Ecuador). J Trop Ecol 17:97–113

    Article  Google Scholar 

  • Sylvester O, Avalos G (2013) Influence of light conditions on the allometry and growth of the understory palm Geonoma undata subsp. edulis (arecaceae) of neotropical cloud forests. Am J Bot 100(12):2357–2363

    Article  PubMed  Google Scholar 

  • Ticktin T (2004) The ecological implications of harvesting non-timber forest products. J Appl Ecol 41:11–21

    Article  Google Scholar 

  • Ticktin T, Johns T, Chapol Xoca V (2003) Patterns of growth in Aechmea magdalenae and its potential as a forest crop and conservation strategy. Agric Ecosyst Environ 94:123–139

    Article  Google Scholar 

  • Trauernicht PC (2004) The understory light environment of Chamaedorea plantations and implications for patterns of regeneration. In: The cultivation and management of Chamaedorea palms in the understory of a tropical rain forest in Mexico. Master of Science in Botanical Sciences, Thesis, University of Hawaii. http://scholarspace.manoa.hawaii.edu/bitstream/handle/10125/10407/uhm_ms_3901_r.pdf

  • Trauernicht C, Ticktin T (2005) The effects of non-timber forest product cultivation on the plant community structure and composition of a humid tropical forest in southern Mexico. For Ecol Manag 219:269–278

    Article  Google Scholar 

  • Trauernicht C, Ticktin T, Lopez-Herrera G (2006) Cultivation of non-timber forest products alters understory light availability in a humid tropical forest in Mexico. Biotropica 38(3):428–436

    Article  Google Scholar 

  • UNEP-GEF (2002) Conservation and sustainable management of below-ground biodiversity: phase i and II. Tropical Soil Biology and Fertility Institute of CIAT (TSBF)

  • Van Der Meer PJ, Sterck FJ, Bongers F (1998) Tree seedling performance in canopy gaps in a tropical rain forest at Nouragues, French Guiana. J Trop Ecol 14:119–137

    Article  Google Scholar 

  • Veenendaal EM, Swaine MD, Lecha RT, Falsch MF, Abebrese IK, Owusu-Afriyie K (1996) Responses of West African forest tree seedlings to irradiance and soil fertility. Funct Ecol 10:501–511

    Article  Google Scholar 

  • Velázquez HE, Ramírez RF (2015) Disputas y Adaptaciones en Torno al Uso de los Recursos en la Reserva de la Biosfera “Los Tuxtlas”, Veracruz (México). Revista de Estudos e Pesquisas sobre as Américas 9(3):1–28

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. García-Pérez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Pérez, J.A., Barois, I. & Alarcón-Gutiérrez, E. Growth and survival of the Mayan palm Chamaedorea hooperiana in two villages of Los Tuxtlas Biosphere Reserve, Veracruz, Mexico: a comparison between primary and secondary forests. Agroforest Syst 92, 1237–1252 (2018). https://doi.org/10.1007/s10457-016-0064-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-016-0064-3

Keywords

Navigation