Skip to main content

Advertisement

Log in

Above-ground biomass models for coffee bushes (Coffea arabica L.) in Líbano, Tolima, Colombia

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Biomass models are practical and useful tools to estimate biomass of perennial wood plants in land use systems that mitigate climate changes, such as coffee plantations. In Colombia, biomass models for coffee (Coffea arabica L.) have not been developed. These models have been built through destructive sampling of 40 individuals of Caturra and Castillo cultivars that grow in the most dominant coffee production systems in the municipality of Líbano, Tolima, Colombia: (1) monoculture; (2) agroforestry systems (AFS) with plantain (Musa AAB); (3) AFS with Spanish elm (Cordia alliodora (Ruiz & Pavon) Oken)); and (4) organic. The bushes were measured (trunk diameter at 15 cm high, D 15, and total height, ht), cut at ground level, and their biomass was estimated gravimetrically by component (trunks, branches, leaves and fruits). Correlation analysis between dependent and independent variables were carried out, and generic models with linear and transformed variables were tested. Biomass models by component, and total, with R2 of 0.62–0.88, including D 15 and ht as an independent variable were found. However, for practical purposes, a total above-ground biomass model was developed exclusively based on D 15 [B = 0.36 − 0.18 * D 15 + 0.08 * D 215 ; R2 = 0.82; where B: total above-ground biomass (kg/plant)]. These models represent practical tools in carbon fixation studies and nutrient cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–17. http://bit.ly/1OFV8Ip. Accessed 25 Jul 2015

  • Anaya JA, Chuvieco E, Palacios-Orueta A (2009) Aboveground biomass assessment in Colombia: a remote sensing approach. For Ecol Manag 257:1237–1246

    Article  Google Scholar 

  • Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of methods. CAB International, Wallingford

    Google Scholar 

  • Beer J, Harvey C, Ibrahim M, Harmand JM, Somarriba E, Jiménez F (2003) Servicios ambientales de los sistemas agroforestales. Agrofor Am 10:80–87. http://bit.ly/1D27c5d. Accessed 25 Jul 2015

  • Arango O (2009) Coffee production systems in Líbano, Tolima, Colombia, Personal communication

  • Brown S (1996) Present and potential roles of forests in the global climate change debate. Unasylva (FAO). http://bit.ly/1LYPiDS. Accessed 29 Jul 2015

  • Causton DR (1985) Biometrical, structural and physiological relationships among tree parts. In: Cannell MGR, Jackson JE (eds) Attributes of trees as crop plants. Institute of Terrestrial Ecology, Huntingdon, pp 137–159. http://bit.ly/1IbK8hz. Accessed 30 Jul 2015

  • CENICAFE (2014) Chinchiná. Centro de Investigación en Café: Ciencia, Tecnología e Innovación para la Caficultura Colombiana. http://agroclima.cenicafe.org/. Accessed 11 Sep 2011

  • Cifuentes-Jara M, Henry M, Réjou-Méchain M et al (2014) Guidelines for documenting and reporting tree allometric equations. Ann For Sci 72(6):763–768. http://bit.ly/1KB4x2w. Accessed 29 Jul 2015

  • Das D, Chaturvedi O, Jabeen N, Dhyani S (2011) Predictive models for dry weight estimation of above and below ground biomass components of Populus deltoides in India: development and comparative diagnosis. Biomass Bionerg 35:1145–1152

    Article  Google Scholar 

  • Dossa E, Fernandes ECM, Reid WS, Ezui K (2008) Above-and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor Syst 72:103–115. http://bit.ly/1Dd7VRI. Accessed 30 Jul 2015

  • Eamus D, McGuinness K, Burrows W (2000) Review of allometric relationships for estimating woody biomass for Queensland, the Northern Territory and Western Australia. Australian Greenhouse Office. http://bit.ly/1DdMwYd. Accessed 30 Jul 2015

  • Fassbender HW (1993) Modelos edafologicos de sistemas agroforestales. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, Cost Rica

    Google Scholar 

  • FedeCafeColombia (2015) Tolima, café de alta calidad. Federación Nacional de Cafeteros de Colombia, Comité Departamental del Tolima. http://bit.ly/1KCfVOk. Accessed 30 Jul 2015

  • Frank E, Eakin H, Lopez-Carr D (2011) Social identity, perception and motivation in adaptation to climate risk in the coffee sector of Chiapas, Mexico. Glob Environ Change 21:66–76. http://bit.ly/1OEcwgb. Accessed 30 Jul 2015

  • Hairiah K, Arifin J, Berlian W, Prayogo C, van-Noordwijk M (2002) Carbon Stock Assessment for a forest-to-coffee conversion landscape in Malang (East Java) and Sumber-Jaya (Lampung, Indonesia). Paper presented at the international symposium on forest carbon sequestration and monitoring, pp 11–15, Taipei. http://bit.ly/1H82j5L. Accessed 30 Jul 2015

  • Holdridge L (1996) Ecología basada en zonas de vida. 4ª reimpresión edn. Instituto Interamericano de Cooperación para la agricultura. Colección Libros y Materiales Educativos/IICA No 83, San José, Costa Rica

    Google Scholar 

  • Lott JE, Howard SB, Black CR, Ong CK (2000) Allometric estimation of above-ground biomass and leaf area in managed Grevillea robusta agroforestry systems. Agrofor Syst 49:1–15

    Article  Google Scholar 

  • Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61:281–295. http://bit.ly/1Itj3pc. Accessed 30 Jul 2015

  • Negash M, Starr M, Kanninen M, Berhe L (2013) Allometric equations for estimating aboveground biomass of Coffea arabica L. grown in the Rift Valley escarpment of Ethiopia. Agrofor Syst 87:953–966

    Article  Google Scholar 

  • Noponen MRA, Haggar JP, Edwards-Jones G, Healey JR (2013) Intensification of coffee systems can increase the effectiveness of REDD mechanisms. Agric Syst 119:1–9. http://bit.ly/1VQmRLb. Accessed 30 Jul 2015

  • Oelbermann M, Voroney RP, Gordon AM (2004) Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agric Ecosyst Environ 104:359–377. http://bit.ly/1fMNCiM. Accessed 30 Jul 2014

  • Overman JPM, Witte HJL, Saldarriaga JG (1994) Evaluation of regression models for above-ground biomass determination in Amazon Rainforest. J Trop Ecol 10:207–218. http://dare.uva.nl/document/2/303. Accessed 30 Jul 2015

  • Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45:573–593

    Google Scholar 

  • Pearson T, Walker S, Brown S (2005) Sourcebook for land use, land-use change and forestry projects. http://bit.ly/1VQoZCQ. Accessed 30 Jul 2015

  • Pereira Coltri P, Zullo Junior J, Dubreuil V, Miranda Ramirez G, Pinto HS, Coral G, Lazarim C (2015) Empirical models to predict LAI and aboveground biomass of Coffea arabica under full sun and shaded plantation: a case study of South of Minas Gerais, Brazil. Agrofor Syst 89:621–636. doi:10.1007/s10457-015-9799-5

    Article  Google Scholar 

  • Perez Cordero LD, Kanninen M (2002) Wood specific gravity and aboveground biomass of Bombacopsis quinata plantations in Costa Rica. For Ecol Manag 165:1–9

    Article  Google Scholar 

  • Picard N, Saint-André L, Henry M (2012) Manual for building tree volume and biomass allometric equations: from field measurements to prediction. FAO (Rome, Italy) and the CIRAD (Montpellier, France). http://bit.ly/1DdmXqw. Accessed 30 Jul 2015

  • Quintero JS, Ataroff M (1998) Contenido y flujos de nitrógeno en la biomasa y hojarasca de un cafetal a plena exposición solar en Los Andes Venezolanos. Revista de la Facultad de Agronomía-Universidad del Zulia (Venezuela) 15:501–514. http://bit.ly/1I5N3ui. Accessed 30 Jul 2015

  • Sah JP, Ross MS, Koptur S, Snyder JR (2004) Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests. For Ecol Manag 203:319–329. http://bit.ly/1KDMWqR. Accessed 30 Jul 2015

  • Segura M, Andrade HJ (2008) Cómo construir modelos alométricos de volumen, biomasa o carbono de especies leñosas perennes? Agrofor Am (CATIE) 2008:89–96. http://bit.ly/1Drxeiz. Accessed 04 Aug 2015

  • Segura M, Kanninen M (2005) Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica 37:2–8. http://bit.ly/1MLPaqj. Accessed 04 Aug 2015

  • Segura M, Kanninen M, Suárez D (2006) Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agrofor Syst 68:143–150

    Article  Google Scholar 

  • Soto-Pinto L, Anzueto M, Mendoza J, Jimenez-Ferrer G, de-Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51. http://bit.ly/1N8BcwT. Accessed 04 Aug 2015

  • Tadesse G, Zavaleta E, Shennan C (2014) Effects of land-use changes on woody species distribution and above-ground carbon storage of forest-coffee systems. Agric Ecosyst Environ 197:21–30 doi:http://dx.doi.org/10.1016/j.agee.2014.07.008. http://www.sciencedirect.com/science/article/pii/S0167880914003685

  • van-Noordwijk M, Widayati A, Lusiana B, Hairiah K, Arifin B (2005) What can a clean development mechanism do to enhance trees in the land scape? Experience with rubber, coffee and timber-based agroforestry systems in Indonesia. In: Murdiyarso D, Herawati H (eds) Carbon forestry: who will benefit? Proceedings of workshop on carbon sequestration and sustainable livelihoods, pp 16–17, Center for International Forestry Research (CIFOR), Bogor, pp 92–111. http://bit.ly/1g6fgr5. Accessed 04 Aug 2015

  • Verchot LV, Mackensen J, Kandji S et al (2005) Opportunities for linking adaptation and mitigation in agroforestry systems. In: Tropical forests and adaptation to climate change: in search of synergies. Adaptation to climate change, sustainable livelihoods and biological diversity, Center for International Forestry Research (CIFOR), Turrialba, Costa Rica, pp 103–121. http://bit.ly/1eRh7z8. Accessed 04 Aug 2015

Download references

Acknowledgements

To all coffee producers that supported this study by allowing the cut of coffee bushes and providing manpower. To Comité de Cafeteros del Tolima (Tolima’s Coffee Committee) for their support in contacting coffee producers. To Comité Central de Investigaciones de la Universidad del Tolima (Universidad del Tolima Central Committee of Research) for supporting the Project “Huella de Carbono en Sistemas de Producción de Café en el Municipio del Líbano, Tolima” (Carbon Footprint in Coffee Production Systems in Libano (Tolima) Municipality, code 80111; and to Diana Skarly Canal for her support in the field and in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán J. C. Andrade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, H.J.C., Segura, M.A., Feria, M. et al. Above-ground biomass models for coffee bushes (Coffea arabica L.) in Líbano, Tolima, Colombia. Agroforest Syst 92, 775–784 (2018). https://doi.org/10.1007/s10457-016-0047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-016-0047-4

Keywords

Navigation