Crop production under different rainfall and management conditions in agroforestry parkland systems in Burkina Faso: observations and simulation with WaNuLCAS model

Abstract

Traditional agroforestry parkland systems in Burkina Faso are under threat due to human pressure and climate variability and change, requiring a better understanding for planning of adaptation. Field experiments were conducted in three climatic zones to assess Sorghum bicolor (L.) Moench (Sorghum) biomass, grain yield and harvest index in parklands under different rainfall pattern and compared to simulations of sorghum biomass and grain yield with the Water, Nutrient and Light Capture in Agroforestry Systems (WaNuLCAS) model for calibration and parametrisation. For planning adaptation, the model was then used to evaluate the effects of different management options under current and future climates on sorghum biomass and grain yield. Management options studied included tree densities, tree leaf pruning, mulching and changes in tree root patterns affecting hydraulic redistribution. The results revealed that sorghum biomass and grain yield was more negatively affected by Parkia biglobosa (Jacq.) Benth. (néré) compared to Vitellaria paradoxa C. F Gaertn (karité) and Adansonia digitata L. (baobab), the three main tree species of the agroforestry parkland system. Sorghum biomass and grain yield in different influence zones (sub-canopy, outside edge of canopy, open field) was affected by the amount of precipitation but also by tree canopy density, the latter depending itself on the ecological zone. The harvest index (grain as part of total biomass) was highest under the tree canopy and in the zone furthest from the tree, an effect that according to the model reflects relative absence of stress factors in the later part of the growing season. While simulating the effects of different management options under current and future climates still requires further empirical corroboration and model improvement, the options of tree canopy pruning to reduce shading while maintaining tree root functions probably is key to parkland adaptation to a changing climate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adam T, Abdoulaye T, Larwanou M, Yamba B, Reij C, Tappan G (2006) Plus de gens, plus d’arbres: La transformation des systèmes de production au Niger et les impacts des investissements dans la gestion des ressources naturelles. Rapport de Synthèse Etude Sahel Niger. Comité Permanent Inter-Etats de Lutte contre la Sécheresse dans le Sahel and Université de Niamey, Niamey

    Google Scholar 

  2. Barnes RD, Fagg CW (2003) Faidherbia albida: Monograph and Annotated Bibliography. Tropical Forestry papers No 41. Oxford Forestry Institute, Oxford

    Google Scholar 

  3. Bayala J, Teklehaimanot Z, Ouédraogo SJ (2002) Millet production under pruned tree crowns in a parkland system in Burkina Faso. Agrofor Syst 54:203–214

    Article  Google Scholar 

  4. Bayala J, Teklehaimanot Z, Ouedraogo SJ (2004) Fine root distribution of pruned trees and associated crops in a parkland system in Burkina Faso. Agrofor Syst 60:13–26

    Article  Google Scholar 

  5. Bayala J, Balesdent J, Marol C, Zapata F, Teklehaimanot Z, Ouedraogo SJ (2006) Relative contribution of trees and crops to soil carbon content in a parkland system in Burkina Faso using variations in natural 13C abundance. Nutr Cycl Agroecosys 76:193–201

    Article  Google Scholar 

  6. Bayala J, Heng LK, van Noordwijk M, Ouedraogo SJ (2008a) Hydraulic Redistribution study in two native tree species of agroforestry parklands of West African dry savanna. Acta Oecologia 34:370–378

    Article  Google Scholar 

  7. Bayala J, van Noordwijk M, Lusiana B, Kasanah N, Teklehaimanot Z, Ouedraogo SJ (2008b) Separating the tree-soil-crop interactions in agroforestry parkland systems in Saponé (Burkina Faso) using WaNuLCAS. Adv Agrofor 4:296–308

    Google Scholar 

  8. Bayala J, Sileshi GW, Coe R, Kalinganire A, Tchoundjeu Z, Sinclair F, Garrity D (2012) Cereal yield response to conservation agriculture practices in drylands of West Africa: a quantitative synthesis. J Arid Environ 78:13–25

    Article  Google Scholar 

  9. Bazié HR, Bayala J, Zombré G, Sanou J, Ilstedt U (2012) Separating competition-related factors limiting crop performance in an agroforestry parkland system in Burkina Faso. Agrofor Syst 84:377–388

    Article  Google Scholar 

  10. Bellow JG, Nair PK (2003) Comparing common methods for assessing understory light availability in shaded-perennial agroforestry systems. Agro For Meteorol 114:197–211

    Article  Google Scholar 

  11. Belsky AJ, Amundson RG, Duxbury JM, Riha SJ, Ali AR, Mwonga SM (1989) The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna in Kenya. J Appl Ecol 26:1005–1024

    Article  Google Scholar 

  12. Boffa JM (1999) Agroforestry parklands in sub-Saharan Africa. FAO Conservation Guide 34, Rome

  13. Boffa JM, Taonda SJ, Dickey JB, Knudson DM (2000) Field-scale influence of karité (Vitellaria paradoxa) on sorghum production in the Sudan zone of Burkina Faso. Agrofor Syst 49:153–175

    Article  Google Scholar 

  14. Botoni E, Reij C (2009) La transformation silencieuse de l’environnement et des systèmes de production au Sahel: L’impact des investissements publics et privés dans la gestion des ressources naturelles. Amsterdam, the Netherlands: Comité Permanent Inter-etats de Lutte Contre la Secheresse dans le Sahel (CILSS) and Vrije University Amsterdam

  15. Breman H, Kessler JJ (1995) Woody plants in agro-ecosystems of semi-arid regions, with an emphasis on the Sahelian countries. Springer Verlag, Berlin

    Google Scholar 

  16. Bunce JA (1990) Abscisic acid mimics effects of dehydration on area expansion and photosynthetic partitioning in young soybean leaves. Plant Cell Environ 13(295):298

    Google Scholar 

  17. Buresh RJ, Tian G (1998) Soil improvement by trees in sub-Saharan Africa. Agrofor Syst 38:51–76

    Article  Google Scholar 

  18. Burgess SSO, Adams MA, Turner NC, Ong CK (1998) Redistribution of soil water by tree root systems. Oecologia 115:306–311

    Article  Google Scholar 

  19. Cadisch G, Rowe E, Suprayogo D, van Noordwijk M (2004) Safety-nets and filter functions of tropical agroforestry systems. In: Hatch DJ et al (eds) Controlling nitrogen flows and losses. Wageningen Academic Publishers, Wageningen, pp 406–414

    Google Scholar 

  20. Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant plant interactions. Oecologia 95:565–574

    Google Scholar 

  21. Direction Générale de la Météorologie (DGM) du Burkina Faso (2011) Base de données de climatiques du Burkina Faso, Ouagadougou, Burkina Faso

  22. Dramé YA, Berti F (2008) les enjeux socio-économiques autour de l’agroforesterie villageoise à Aguié (Niger). Tropicultura 26:141–149

    Google Scholar 

  23. Du C, Zhou J (2009) Evaluation of soil fertility using infrared spectroscopy: a review. Environ Chem Lett 7:97–113

    CAS  Article  Google Scholar 

  24. Gijsbers HJ, Kessler JJ, Knevel MK (1994) Dynamics and natural regeneration of woody species in farmed parklands in the Sahel region (Province of Passoré, Burkina Faso). For Ecol Manag 64:1–12

    Article  Google Scholar 

  25. Hadgu KM (2008) Temporal and spatial changes in land use patterns and biodiversity in relation to farm productivity at multiple scales in Tigray, Ethiopia. PhD dissertation, Wageningen University, The Netherlands

  26. Hall JB, Tomlinson HF, Oni PI, Buchy M, Aebischer DP (1997) Parkia biglobosa: a monograph. University of Wales, Bangor

    Google Scholar 

  27. Ilstedt U, Malmer A, Verbeeten E, Murdiyarso D (2007) The effect of afforestation on water infiltration in the tropics: a systematic review and meta-analysis. For Ecol Manag 251:45–51

    Article  Google Scholar 

  28. Jonsson K, Ong CK, Odongo JC (1999) Influence of scattered néré and karité trees on microclimate, soil fertility and millet yield in Burkina Faso. Exp Agric 35:39–53

    Article  Google Scholar 

  29. Kaboré D, Reij C (2004) The emergence and spreading of an improved traditional soil and water conservation practice in Burkina Faso. Environment and production technology division working paper no. 114. International Food Policy Research Institute, Washington, DC

  30. Kater LJ, Kante S, Budelman A (1992) Karité (Vitellaria paradoxa) and néré (Parkia biglobosa) associated with crops in South Mali. Agrofor Syst 18:89–105

    Article  Google Scholar 

  31. Kelly BA, Bouvet JM, Picard N (2004) Size classes and spatial pattern of Vitellaria paradoxa in relation to farmers’practices in Mali. Agrofor Syst 60:3–11

    Article  Google Scholar 

  32. Kessler JJ (1992) The influence of Karité (Vitellaria paradoxa) and Néré (Parkia biglobosa) trees on sorghum production in Burkina Faso. Agrofor Syst 17:97–118

    Article  Google Scholar 

  33. Kessler JJ, Boni J (1991) L’agroforesterie au Burkina Faso. Bilan et analyse. Resource Management Papers 1. Université Agronomique Wageningen, Les Pays Bas

  34. Kho RM (2000) A general tree-environment-crop interaction equation for predictive understanding of agroforestry systems. Agric Ecosys Environ 80:87–100

    Article  Google Scholar 

  35. Kindt R, Kalinganire A, Larwanou M, Belem M, Dakouo JM, Bayala J, Kaire M (2008) Species accumulation within land use and tree diameter categories in Burkina Faso, Mali, Niger and Senegal. Biodivers Conserv 17:1883–1905

    Article  Google Scholar 

  36. Lufafa A, Bolte J, Wright D, Khouma M, Diedhiou I, Dick RP, Kizito F, Dossa E, Noller JS (2008) Regional carbon stocks and dynamics in native woody shrub communities of Senegal’s peanut basin. Agric Ecosys Environ 128:1–11

    CAS  Article  Google Scholar 

  37. Maiga A (1987) L’arbre dans les systèmes agroforestiers traditionnels dans la province de Bazega. Influence du karité, du néré et de l’Acacia albida sur le sorgho et le mil. Mémoire Institut de développement rural (IDR). IRBET/CNRST, Ouagadougou, Burkina Faso

  38. Ministère de l’Environnement et du Cadre de Vie (MECV) (2006) Evaluation de la vulnérabilité et des capacités d’adaptation aux changements climatiques du Burkina Faso. Rapport provisoire, Burkina Faso

  39. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I-A discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  40. Nikiéma A (2005) Agroforestry Parkland Species Diversity: Uses and Management in Semi-Arid West Africa (Burkina Faso). PhD thesis Wageningen University, Wageningen, The Netherlands

  41. Ong CK, Swallow BM (2004) Water productivity in forestry and agroforestry. In: Kijne W, Barker R, Molden D (eds) Water productivity in agriculture: limits and opportunities for improvement. CAB International, Oxon, pp 217–228

    Google Scholar 

  42. Ong CK, Black CR, Marshall FM, Corlett J (1996) Principles of resource capture and utilization of light and water. In: Ong CK, Huxley P (eds) Tree–crop interactions. A physiological approach, Wallingford, pp 73–158

    Google Scholar 

  43. Ouédraogo AS (1995) Parkia biglobosa (Leguminosae) en Afrique de l’Ouest: Biosystématique et Amélioration. PhD thesis. Institute for Forestry and Nature Research IBN-DLO, Wageningen, The Netherlands

  44. Reij C, Tappan G, Smale M (2009) Agroenvironmental Transformation in the Sahel: Another kind of “green revolution”. IFPRI Discussion paper 00914. International Food Policy Research Institute, Washington DC

  45. Rhoades C (1995) Seasonal pattern of nitrogen mineralization and soil moisture beneath Faidherbia albida (syn Acacia albida) in central Malawi. Agrofor Syst 29:133–145

    Article  Google Scholar 

  46. Sanchez PA (1995) Science in agroforestry. Agrofor Syst 30:1–55

    Article  Google Scholar 

  47. Sanou J, Bayala J, Teklehaimanot Z, Bazie P (2012) Effect of shading by baobab (Adansonia digitata) and néré (Parkia biglobosa) on yields of millet (Pennisetum glaucum) and taro (Colocasia esculenta) in parkland systems in Burkina Faso, West Africa. Agrofor Syst 85:431–441

    Article  Google Scholar 

  48. Shepherd KD, Walsh MG (2002) Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J 66:988–998

    CAS  Article  Google Scholar 

  49. Sina S (2006) Reproduction et Diversité Génétique chez Parkia biglobosa (Jacq.) G. Don. Dissertation, Wageningen University, The Netherlands

  50. Smith DM, Jackson NA, Roberts JM, Ong CK (1998) Reverse flow in tree roots and downward siphoning of water by Grevillea robusta. Funct Ecol 13:256–264

    Article  Google Scholar 

  51. Teklehaimanot Z (2004) Exploiting the potential of indigenous agroforestry trees: Parkia biglobosa and Vitellaria paradoxa in sub-Saharan Africa. Agrofor Syst 61:207–220

    Article  Google Scholar 

  52. Tennant D (1975) A test of a modified line intersect method of estimating root length. J Appl Ecol 63:995–1001

    Google Scholar 

  53. van Noordwijk M, Cadisch G (2002) Access and excess problems in plant nutrition. Plant Soil 247:25–40

    Article  Google Scholar 

  54. van Noordwijk M, Lusiana B (1999) WaNuLCAS a model of water, nutrient and light capture in agroforestry systems. Agrofor Syst 43:217–242

    Article  Google Scholar 

  55. van Noordwijk M, Mulia R (2002) Functional branch analysis as tool for fractal scaling above-and belowground trees for their additive and non-additive properties. Ecol Model 149:41–51

    Article  Google Scholar 

  56. van Noordwijk M, Lusiana B, Khasanah N, Mulia R (2011) WaNuLCAS Version 4.0, Background on a model of water, nutrient and light capture in agroforestry systems. International Center for Research in Agroforestry (ICRAF), Bogor, Indonesia

  57. van Noordwijk M, Mulia R, Bayala J (2012) Buffering soil water supply to crops by hydraulic equilibration in conservation agriculture with deep-rooted trees: application of a process-based tree-soil-crop simulation model to parkland agroforestry in Burkina Faso. In: Hauswirt D, Sen PT et al. (eds.) Conservation Agriculture and Sustainable Upland Livelihoods Innovations for, with and by Farmers to Adapt to Local and Global Changes, proceedings of the 3rd International Conference on Conservation Agriculture in Southeast Asia, Hanoi 2012, pp 176–179

  58. Wenzel W, Ayisi K, Donaldson G (2000) Importance of harvest index in drought resistance of sorghum. J Appl Bot 74(5–6):203–205

    Google Scholar 

  59. Zomboudré G, Zombré G, Zombré G, Ouedraogo M, Guinko S, Roy Macauley H (2005) Réponse physiologique et productivité des cultures dans un système agroforestier traditionnel : cas du maïs (Zea mays L.) associé au karité (Vitellaria paradoxa Gaertn.) dans la zone est du Burkina Faso. BASE 9(1):75–85

    Google Scholar 

Download references

Acknowledgments

This study was funded by the project Adaptation of Land Use to Climate Change in Sub Saharan Africa (ALUCCSA). We thank the farmers in Nobéré, Sokouraba and Tougouri for their permission to perform the field experiment, and their participation. We also thank anonymous reviewers for comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Bayala.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coulibaly, Y.N., Mulia, R., Sanou, J. et al. Crop production under different rainfall and management conditions in agroforestry parkland systems in Burkina Faso: observations and simulation with WaNuLCAS model. Agroforest Syst 88, 13–28 (2014). https://doi.org/10.1007/s10457-013-9651-8

Download citation

Keywords

  • Climate change
  • Hydraulic redistribution
  • Modeling
  • Roots
  • Scenarios
  • Tree–soil–crop interactions
  • WaNuLCAS