Skip to main content

Advertisement

Log in

Modelling molecular and inorganic data of Amanita ponderosa mushrooms using artificial neural networks

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Wild edible mushrooms Amanita ponderosa Malençon and Heim are very appreciated in gastronomy, with high export potential. This species grows in some microclimates, namely in the southwest of the Iberian Peninsula. The results obtained demonstrate that A. ponderosa mushrooms showed different inorganic composition according to their habitat and the molecular data, obtained by M13-PCR, allowed to distinguish the mushrooms at species level and to differentiate the A. ponderosa strains according to their location. Taking into account, on the one hand, that the characterisation of different strains is essential in further commercialisation and certification process and, on the other hand, the molecular studies are quite time consuming and an expensive process, the development of formal models to predict the molecular profile based on inorganic composition comes to be something essential. In the present work, Artificial Neural Networks (ANNs) were used to solve this problem. The ANN selected to predict molecular profile based on inorganic composition has a 6-7-14 topology. A good match between the observed and predicted values was observed. The present findings are wide potential application and both health and economical benefits arise from this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alves A, Phillips A, Henriques I, Correia A (2007) Rapid differentiation of species of Botryosphaeriaceae by PCR fingerprinting. Res Microbiol 158:112–121

    Article  PubMed  CAS  Google Scholar 

  • Caldeira AT, Salvador C, Pinto F, Arteiro JM, Martins MR (2009) MSP-PCR and RAPD molecular biomarkers to characterize Amanita ponderosa mushrooms. Ann Microbiol 59(3):1–6

    Article  Google Scholar 

  • Caldeira AT, Vicente H, Arteiro JM, Roseiro JC, Neves J (2011a) An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: application to the production of antifungal compounds. Bioresour Technol 102:1496–1502

    Article  PubMed  Google Scholar 

  • Caldeira AT, Roseiro JC, Arteiro JM, Neves J, Vicente H (2011b) Production of bioactive compounds against wood contaminant fungi: an artificial intelligence approach. In: Caldeira Fernando (ed) Minimizing the environmental impact of the forest products industries. University Fernando Pessoa, Porto, pp 131–137

    Google Scholar 

  • Commission E (2003) Opinion of the scientific committee on food on the tolerable upper intake level of copper. Health and Consumer Protection Directorate-General, Brussels

    Google Scholar 

  • FAO/WHO (2002) Human vitamin and mineral requirements. World Health Organization, Food and Agriculture Organization of United Nations, Rome

    Google Scholar 

  • Firenzuoli F, Gori L, Lombardo G (2007) The medicinal mushroom Agaricus blazei Murrill: review of literature and pharmaco-toxicological problems. Adv Access Pub 5(1):3–15

    Google Scholar 

  • Galushkin AI (2007) Neural networks theory. Springer, New York

    Google Scholar 

  • Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor 11:10–18

    Article  Google Scholar 

  • Han J, Kamber M (2006) Data mining: concepts and techniques. Morgan Kauffmann Publishers, San Francisco

    Google Scholar 

  • Haykin S (2008) Neural networks and learning machines. Prentice Hall, New Jersey

    Google Scholar 

  • Kalac P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:2–15

    Article  CAS  Google Scholar 

  • Kalac P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:73–281

    Article  Google Scholar 

  • Kewley R, Embrechts M, Breneman C (2000) Data strip mining for the virtual design of pharmaceuticals with neural networks. IEEE T Neural Networ 11:668–679

    Article  CAS  Google Scholar 

  • Lopes M, Silva D, Freitas G, Tenreiro R (2007) Simultaneous identification and typing of Candida species by MSP-PCR and AFLP: study of clinical isolates from a Portuguese pediatric hospital. J Mycol Med 17:157–167

    Article  Google Scholar 

  • Malençon G, Heim R (1942) Notes critiques sur quelques hymènomycetes d’Europe et d’Afrique du Nord I. Les amanites blanches meridionales. Bull Soc Mycol Fr 58:14–34

    Google Scholar 

  • Martins MR (2004) Degradação Biológica de Fungicidas em Amostras de Solo, Tese de Doutoramento. Universidade de Évora, Évora

    Google Scholar 

  • Mendil D, Uluözlü O, Hasdemir E, Caglar A (2004) Determination of trace elements on some wild edible mushroom samples from Kastamonou, Turkey. Food Chem 88:281–285

    Article  CAS  Google Scholar 

  • Moncalvo J, Drehmel D, Vilgalys R (2000) Variation in modes and rates of evolution in nuclear and mitochondrial ribosomal DNA in the mushroom genus Amanita (Agaricales, basidiomycota): phylogenetic implications. Mol Phylogenet Evol 16:8–63

    Article  Google Scholar 

  • Moreno G, Platas G, Peláez F, Bernedo M, Vargas A, Daza A, Santamaría C, Camacho M, de la Osa L, Manjón J (2008) Molecular phylogenetic analysis shows that Amanita ponderosa and A. curtipes are distinct species. Mycol Progress 7:41–47

    Article  Google Scholar 

  • Moreno-Rojas R, Díaz-Valverde A, Moreno-Arroyo B, González T, Capote C (2004) Mineral content of gurumelo (Amanita ponderosa). Food Chem 85:325–330

    Article  CAS  Google Scholar 

  • Ouzouni P, Veltsistas P, Paleologos E, Riganakos K (2007) Determination of metal content in wild edible mushroom species from regions of Greece. J Food Compos Anal 20:480–486

    Article  CAS  Google Scholar 

  • Rumelhart D, Hinton G, Williams R (1986) Learning internal representation by error propagation. In: Rumelhart DE, McCleland JL (eds) Parallel distributed processing. MIT Press, Massachusetts, pp 318–362

    Google Scholar 

  • Sesli E, Tuzen M, Soylak M (2008) Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. J Hazard Mater 160:462–467

    Article  PubMed  CAS  Google Scholar 

  • Souza J, Matwin S, Japkowicz N (2002) Evaluating data mining models: a pattern language. In: Proceedings of the 9th conference on pattern language of programs, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 8−12 Sept 2002, pp 1–23

  • Vetter J (2005) Mineral composition of basidiomes of Amanita species. Mycol Res 109(6):746–750

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Teresa Caldeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvador, C., Martins, M.R., Vicente, H. et al. Modelling molecular and inorganic data of Amanita ponderosa mushrooms using artificial neural networks. Agroforest Syst 87, 295–302 (2013). https://doi.org/10.1007/s10457-012-9548-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-012-9548-y

Keywords

Navigation