Skip to main content
Log in

A data mining approach to improve multiple regression models of soil nitrate concentration predictions in Quercus rotundifolia montados (Portugal)

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The changes in the soil nitrate concentration were studied during 2 years in a “montado” ecosystem, in the South of Portugal. Total rainfall, air and soil temperature and soil water content under and outside Quercus rotundifolia canopy were also evaluated. A cluster analysis was carried out using climatic and microclimatic parameters in order to maximize the intraclass similarity and minimize the interclass similarity. It was used the k-Means Clustering Method. Several cluster models were developed using k values ranging between 2 and 5. Thereafter, in each cluster, the data were divided according to their origin (soil under canopy and open areas, and from surface and deep layers). Multiple regression models were tested for each cluster, to assess the relationship between soil nitrate concentration and a set of climatic and microclimatic parameters and the results were compared with models assessed without clustering. The models achieved with data grouped in result of clustering analysis showed better performance than the models achieved without clustering, mostly for data from open areas soils. When temperature is low and/or water presents excess or scarcity levels, the data from soils in undercanopy areas, give rise to models with worst performance than models from open soil areas data. The results obtained for undercanopy area suggest that nitrification process in soil under Quercus rotundifolia trees influence is more complex than for open areas, and subject to other relevant factors beyond water and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Benbi DK, Richter J (2003) Nitrogen dynamics. In: Benbi DK, Nieder R (eds) Handbook of processes and modeling in the soil-plant system. Haworth, New York, pp 409–481

    Google Scholar 

  • Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139–157

    Article  Google Scholar 

  • Breiman L, Friedman J, Olshen R, Stone C (1998) Classification and regression trees. CRC Press, Boca Raton

    Google Scholar 

  • Carvalhosa AB, Carvalho AMG, Alves CAM (1969) Notícia explicativa da folha 40-A—Évora da Carta Geológica de Portugal na escala de 1/50000. Serviços Geológicos de Portugal, Lisboa

    Google Scholar 

  • Cubera E, Nunes JM, Madeira M, Gazarini L (2009) Influence of Quercus ilex trees on herbaceous production and nutrient concentrations in southern Portugal. J Plant Nutr Soil Sci 172:565–571

    Article  Google Scholar 

  • David TS, Gash JHC, Valente F, Pereira JS, Ferreira MI, David JS (2006) Rainfall interception by an isolated evergreen oak tree in a Mediterranean savannah. Hydrol Process 20:2713–2726

    Article  Google Scholar 

  • De Marco A, Meola A, Esposito F, Virzo de Santo A (2008) Productivity and modifications of ecosystem processes in gaps of a low Macchia in southern Italy. Web Ecol 8:55–66

    Google Scholar 

  • Dijkstra FA, Wrage K, Hobbie SE, Reich PB (2006) Tree patches show greater N losses but maintain higher soil N availability than grassland patches in a frequently burned oak savanna. Ecosystems 9:441–452

    Article  CAS  Google Scholar 

  • Eichhorn MP, Paris P, Herzog F, Incoll LD, Liagre F, Mantzanas K, Mayus M, Moreno G, Pilbeam DJ (2006) Silvoarable agriculture in Europe-past, present and future. Agrofor Syst 67:29–50

    Article  Google Scholar 

  • Escudero A, Garcia B, Gomez JM, Luis E (1985) The nutrient cycling in Quercus rotundifolia and Quercus pyrenaica ecosystems (« dehesas ») of Spain. Acta Oecol Oecol Plant 6:73–86

    CAS  Google Scholar 

  • Gallardo A (2003) Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean Dehesa. Pedobiologia 47:117–125

    Article  CAS  Google Scholar 

  • Gallardo A, Rodríguez-Saucedo JJ, Covelo F, Fernández-Alés R (2000) Soil nitrogen heterogeneity in a Dehesa ecosystem. Plant Soil 222:71–82

    Article  CAS  Google Scholar 

  • Giardina CP, Ryan MG, Hubbard RM, Binkley D (2001) Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Sci Soc Am J 65:1272–1279

    Article  CAS  Google Scholar 

  • Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor 11:10–18

    Article  Google Scholar 

  • Han J, Kamber M (2006) Data mining: concepts and techniques. Morgan Kauffmann, San Francisco

    Google Scholar 

  • Harrison AF, Taylor K, Hatton JC, Howard DM (1994) Role of nitrogen in herbage production by Agrostis-Festuca hill grassland. J Appl Ecol 31:351–360

    Article  Google Scholar 

  • Houba VJS, Novozamsky I, Termminghoff E (1994) Soil analysis procedures. Wageningen Agricultural University, Wageningen

    Google Scholar 

  • INMG (1991) O clima de Portugal. Normais climatológicas da região de Alentejo e Algarve, Correspondentes a 1951–1980. Fascículo XLIX, Vol. 4–4ª região. Instituto Nacional de Meteorologia e Geofísica, Lisboa

    Google Scholar 

  • Jackson LE, Strauss RB, Firestone MK, Bartolome JW (1990) Influence of tree canopies on grassland productivity and nitrogen dynamics in deciduous oak savanna. Agric Ecosyst Environ 32:89–105

    Article  Google Scholar 

  • Joffre R, Rambal S (1988) Soil water improvement by trees in rangelands of southern Spain. Acta Oecol 9:405–422

    Google Scholar 

  • Joffre R, Rambal S (1993) How tree cover influences the water balance of Mediterranean rangelands. Ecology 74:570–582

    Article  Google Scholar 

  • Joffre R, Rambal S, Ratte PJ (1999) The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agrofor Syst 45:57–79

    Article  Google Scholar 

  • Kieft TL, Soroker E, Firestone MK (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126

    Article  Google Scholar 

  • Kohavi R, Provost F (1998) Glossary of terms. Mach Learn 30:271–274

    Article  Google Scholar 

  • Kristensen HL, Henriksen K (1998) Soil nitrogen transformations along a successional gradient from Calluna heathland to Quercus forest at intermediate atmospheric nitrogen deposition. Appl Soil Ecol 8:95–109

    Article  Google Scholar 

  • Malchair S, Carnol M (2009) Microbial biomass and C and N transformations in forest floors under European beech, sessile oak, Norway spruce and Douglas-fir at four temperate forest sites. Soil Biol Biochem 41:831–839

    Article  CAS  Google Scholar 

  • Monaghan R, Barraclough D (1995) Contributions to gross N mineralization from 15N-labelled soil macroorganic matter fractions during laboratory incubation. Soil Biol Biochem 27:1623–1628

    Article  CAS  Google Scholar 

  • Moreno G, Obrador JJ, García A (2007) Impact of evergreen oaks on soil fertility and crop production in intercropped dehesas. Agric Ecosyst Environ 119:270–280

    Article  CAS  Google Scholar 

  • Nunes JD, Sá C, Soares-David T, Madeira M, Gazarini L (1999) Interacção entre o ciclo de nutrientes em montados de Quercus rotundifolia Lam. e as características do solo. Revista de Biologia 17:311–325

    Google Scholar 

  • Patra AK, Jarvis SC, Hatch DJ (1999) Nitrogen mineralization in soil layers, soil particles and macro-organic matter under grassland. Biol Fertil Soils 29:38–45

    Article  CAS  Google Scholar 

  • Paul KI, Polglase PJ, O’Connell AM, Carlyle JC, Smethurst PJ, Khanna PK (2003) Defining the relation between soil water content and net nitrogen mineralization. Eur J Soil Sci 54:39–47

    Article  CAS  Google Scholar 

  • Perakis S, Kellogg CH (2007) Imprint of oaks on nitrogen availability and d15N in California grassland-savanna: a case of enhanced N inputs? Plant Ecol 191:209–220

    Article  Google Scholar 

  • Priha O, Smolander A (1999) Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at tow forest sites. Soil Biol Biochem 31:965–977

    Article  CAS  Google Scholar 

  • Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106

    Google Scholar 

  • Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann, San Mateo

    Google Scholar 

  • Rovira P, Vallejo VR (1997) Organic carbon and nitrogen mineralization under Mediterranean climatic conditions: the effects of incubation depth. Soil Biol Biochem 29:1509–1520

    Article  CAS  Google Scholar 

  • Rutigliano FA, Castaldi S, D’Ascoli R, Papa S, Carfora A, Marzaioli R, Fioretto A (2009) Soil activities related to nitrogen cycle under three plant cover types in Mediterranean environment. Appl Soil Ecol 43:40–46

    Article  Google Scholar 

  • Sá C, Madeira M, Gazarini L (2005) Produção e decomposição de folhas da folhada de Quercus suber L. e Q. rotundifolia Lam. Revista de Ciências Agrárias 28:257–272

    Google Scholar 

  • Shaffer MJ, Ma L, Hansen S (2001) Introduction to simulation of carbon and nitrogen dynamics in soils. In: Shaffer MJ, Ma L, Hansen S (eds) Modelling carbon and nitrogen dynamics for soil management. Lewis, Boca Raton, pp 1–10

    Google Scholar 

  • Singh JS, Raghubanshi AS, Singh RS, Srivastava SC (1989) Microbial biomass acts as a source of plant nutrients in dry tropical forest and savannah. Nature 338:499–500

    Article  Google Scholar 

  • Souza J, Matwin S, Japkowicz N (2002) Evaluating data mining models: a pattern language. In: Proceedings of the 9th conference on pattern language of programs, Illinois, pp 1–23

  • Stump LM, Binkley D (1993) Relationships between litter quality and nitrogen availability in Rocky Mountain forests. Can J For Res 23:492–502

    Article  CAS  Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea-how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek PM, Gosz JR, Grier CC, Melillo JM, Reiners WA (1982) A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecol Monogr 52:155–177

    Article  CAS  Google Scholar 

  • Whitehead DC (1995) Grassland nitrogen. CAB International, Wallingford

    Google Scholar 

  • Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Fransisco

    Google Scholar 

  • Wong MTF, Nortcliff S (1995) Seasonal fluctuations of native available N an soil management implications. Fertil Res 42:13–36

    Article  CAS  Google Scholar 

  • WRB (2006) World reference base for soil resources, 2nd edn. World soil resources reports no. 103. FAO, Rome

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Nunes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunes, J., Madeira, M., Gazarini, L. et al. A data mining approach to improve multiple regression models of soil nitrate concentration predictions in Quercus rotundifolia montados (Portugal). Agroforest Syst 84, 89–100 (2012). https://doi.org/10.1007/s10457-011-9416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-011-9416-1

Keywords

Navigation