Skip to main content

Advertisement

Log in

Allometric models for predicting above- and belowground biomass of Leucaena-KX2 in a shaded coffee agroecosystem in Hawaii

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

We developed site-specific allometric models for Leucaena leucocephala × pallida var. KX2 trees in a shaded coffee agroecosystem in Hawaii to predict above- and belowground biomass and the regrowth potential of pollarded trees. Models were used to compare tree growth rates in an experimental agroforestry system with different pollarding frequencies and additions of tree pruning residues as mulch. For all allometric equations, a simple power model (Y = aXb) provided the optimal prediction of biomass or regrowth after pollarding. For aboveground biomass components (stem, branches, leaves, and seed and pods), stem diameter alone was the best predictor variable. Stump diameter provided the best prediction of coarse root biomass and aboveground regrowth after pollarding. Predictions of biomass from generalized allometric models often fell outside the 95% confidence intervals of our site-specific models, especially as biomass increased. The combination of pollarding trees once per year plus the addition of tree mulch resulted in the greatest aboveground regrowth rates as well as accumulation of biomass and C in the stump plus coarse roots. Although optimal prediction required the development of site-specific allometric relationships, a simple power model using stem or stump diameter alone can provide an accurate assessment of above- and belowground tree biomass, as well as regrowth potential under specific management scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27

    Article  CAS  Google Scholar 

  • Ares A, Quesada JP, Boniche J, Yost RS, Molina E, Smith J (2002) Allometric relationships in Bactris gasipaes for heart-of-palm production agroecosystems in Costa Rica. J Agric Sci 138:285–292

    Article  Google Scholar 

  • ASTM (1983) Standard test methods for specific gravity of wood and wood-base materials. Edition D 2395-83. ASTM, Philadelphia, pp 353–360

  • Bartelink HH (1998) A model of dry matter partitioning in trees. Tree Physiol 18:91–101

    PubMed  Google Scholar 

  • Bengough AG, Castrignano A, Pages L, Van Noordwijk M (2000) Sampling strategies, scaling, and statistics. In: Smit AL, Bengough AG, Engels C, Van Noordwijk M, Pellerin S, Van de Geijn SC (eds) Root methods: a handbook. Springer, Berlin, pp 147–173

    Google Scholar 

  • Bolte A, Rahmann T, Kuhr M, Pogoda P, Murach D, Gadow K (2004) Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.). Plant Soil 264(1–2):1–11

    Article  CAS  Google Scholar 

  • Brewbaker JL (2008) Registration of KX2-Hawaii, interspecific-hybrid leucaena. J Plant Regist 2:190–193

    Article  Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. Forestry paper 134. United Nations Food and Agriculture Organization, Rome

    Google Scholar 

  • Burrows WH, Hoffmann MB, Crompton JF, Back PV, Tait LJ (2000) Allometric relationships and community estimates for some dominant Eucalypts in central Queensland woodlands. Austr J Bot 48(6):707–714

    Article  Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11

    Article  Google Scholar 

  • Cairns MA, Olmsted I, Granados J, Argaez J (2003) Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For Ecol Manag 186:125–132

    Article  Google Scholar 

  • Chambers JQ, dos Santos J, Ribeiro RJ, Higuchi N (2001) Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. For Ecol Manag 152:73–84

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  PubMed  CAS  Google Scholar 

  • Chen TH, Sheu BH, Chang CT (1998) Accumulation of stand biomass and nutrient contents of Casuarina plantations in Suhu coastal area. Taiwan J For Sci 13(4):335–349

    Google Scholar 

  • Claesson S, Sahlen K, Lundmark T (2001) Functions for biomass estimation of young Pinus sylvestris, Picea abies and Betula spp. from stands in Northern Sweden with high stand densities. Scand J For Res 16:138–146

    Article  Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Tomlison JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11:356–370

    Article  Google Scholar 

  • Drexhage M, Colin F (2001) Estimation root system biomass from breast-height diameters. Forestry 74:491–497

    Article  Google Scholar 

  • Duguma B, Kang BT, Okali DU (1988) Effect of pruning intensities of three woody leguminous species grown in alley cropping with maize and cowpea on an alfisol. Agrofor Syst 6:19–35

    Google Scholar 

  • Evensen CLI (1985) Effect of season and forage yield variation of Leucaena. Leucaena Res Rep 6:88–90

    Google Scholar 

  • Fownes JH, Harrington RA (1992) Allometry of woody biomass and leaf area in five tropical multipurpose trees. J Trop For Sci 4(4):317–330

    Google Scholar 

  • Giambelluca TW, Nullet MA, Schroeder TA (1986) Rainfall atlas of Hawaii. Report R76. State of Hawaii. Department of Land and Natural Resources, Division of Water and Land Development, Honolulu

    Google Scholar 

  • Gower ST, Pongracic S, Landsberg JJ (1996) A global trend in belowground carbon allocation: can we use relationship at smaller scales? Ecology 77:1750–1755

    Article  Google Scholar 

  • Harrington G (1979) Estimating aboveground biomass of trees and shrubs in a Eucalyptus populnea F. Mull. Woodland by regression of mass on trunk diameter and plant height. Aust J Bot 27:135–143

    Article  Google Scholar 

  • Haynes BE, Gower ST (1995) Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiol 15:317–325

    PubMed  Google Scholar 

  • Hoffmann CW, Usoltsev VA (2001) Modeling root biomass distribution in Pinus sylvestris forests of the Turgai Depression of Kazakhstan. For Ecol Manag 149:103–114

    Article  Google Scholar 

  • Husch B, Beers TW, Kershaw JA Jr (2003) Forest mensuration, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Huxley P (1999) Tropical agroforestry. Blackwell Science, Oxford

    Google Scholar 

  • Idol T, Haggar J, Cox L (2011) Ecosystem services from smallholder forestry and agroforestry in the tropics. In: Campbell WP, Lopez SL (eds) Integrating agriculture, conservation, and ecotourism: examples from the field. Springer, New York (in press)

  • Kaonga ML, Bayliss-Smith TB (2009) Allometric models for estimation of aboveground carbon stocks in improved fallows in eastern Zambia. Agrofor Syst 78(3):217–232

    Article  Google Scholar 

  • Kapeluck PR, Van Lear DH (1995) A technique for estimating below-stump biomass of mature loblolly pine plantations. Can J For Res 25:355–360

    Article  Google Scholar 

  • Kenzo T, Ichie T, Hattori D, Itioka T, Handa Ch, Ohkubo T, Kendawang JJ, Nakamura M, Sakaguchi M, Takahashi N, Okamoto M, Tanaka-Oda A, Sakurai K, Ninomiya I (2009) Development of allometric relationships for accurate estimation of above-and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. J Trop Ecol 25:371–386

    Article  Google Scholar 

  • Kurz WA, Beukema SJ, Apps MJ (1996) Estimation root biomass and dynamics for the carbon budget of the Canadian forest sector. Can J For Res 26:1973–1979

    Article  Google Scholar 

  • Laiho R, Finer L (1996) Changes in root biomass after water-level draw down on pine mires in Southern Finland. Scand J For Res 11:251–260

    Article  Google Scholar 

  • Lambert MC, Ung CH, Raulier F (2005) Canadian national tree aboveground biomass equations. Can J For Res 35:1996–2018

    Article  Google Scholar 

  • Li Z, Kurz WA, Apps MJ, Beukema SJ (2003) Belowground biomass dynamics in the Carbon Budget Model of Canadian Forest Sector: recent improvements and implications for the estimation of NPP and NEP. Can J For Res 33:126–136

    Article  Google Scholar 

  • Lin K, Ma F, Tang S (2001) Allometric equations for predicting aboveground biomass of tree species in Fushani forest. Taiwan J For Sci 16(3):143–151

    Google Scholar 

  • Litton CM, Kauffman JB (2008) Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica 40:313–320

    Article  Google Scholar 

  • Lovett GM, Tobiessen P (1993) Carbon and nitrogen assimilation in red oaks (Quercus rubra L.) subject to defoliation and nitrogen stress. Tree Physiol 12:259–269

    PubMed  Google Scholar 

  • Maxwell SE, Delaney HD (2004) Designing experiments and analyzing, 2nd edn. Lawrence Erlbaum Associates, Hillsdale. Chapters 13 and 14

  • Myung JI, Tang Y, Pitt MA (2010) Evaluation and comparison of computational models. In: Johnson ML (Ed) Essential numerical computer methods. Elsevier Science & Technology Books, Amsterdam. Chapter 21, pp 511–527

  • Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine root, net primary production, and soil nitrogen availability—a new hypothesis. Ecology 66:1377–1390

    Article  Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Navar J (2009) Allometric equation for tree species and carbon stocks for forests of northwestern Mexico. For Ecol Manag 257:427–434

    Article  Google Scholar 

  • Northup BK, Zitzer SF, Archer S, McMurtry CR, Boutton TW (2005) Aboveground biomass and carbon and nitrogen content of woody species in a subtropical thornscrub parkland. J Arid Environ 62:23–43

    Article  Google Scholar 

  • Onyekwelu JC (2004) Above-ground biomass production and biomass equations for even-aged Gmelina arborea (ROXB) plantations in South-western Nigeria. Biomass Bioenergy 26:39–46

    Article  Google Scholar 

  • Otieno K, Onim JFM, Bryant MJ, Dzowela BH (1991) The relation between biomass yield and linear measures of growth in Sesbania sesban in western Kenya. Agrofor Syst 13:131–141

    Article  Google Scholar 

  • Overman JPM, Witte HJL, Saldarriaga JG (1994) Evaluation of regression models for above-ground biomass determination in Amazon rainforest. J Trop Ecol 10:207–218

    Article  Google Scholar 

  • Philip MS (1994) Measuring trees and forests, 2nd edn. CAB International, Wallingford

    Google Scholar 

  • Pilli R, Anfodillo T, Carrer M (2006) Towards a functional and simplified allometry for estimating forest biomass. For Ecol Manag 237:583–593

    Article  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Salis SM, Assis MA, Mattos PP, Pia ACS (2006) Estimating the aboveground biomass and wood volume of savanna woodlands in Brazil’s Pantanal wetlands based on allometric correlations. For Ecol Manag 228:61–68

    Article  Google Scholar 

  • Sampaio EV, Silva GC (2005) Biomass equations for Brazilian semiarid caatinga plants. Acta Bot Bras 19(4):935–943

    Article  Google Scholar 

  • Santantonio DF, Herman RK, Overton WS (1977) Root biomass studies in forest ecosystems. Pedobiologia 17:1–31

    CAS  Google Scholar 

  • Santos-Martin F, Navaro-Cerrillo RM, Mulia R, van Noordwijk M (2010) Allometric equations based on a fractal branching model for estimating aboveground biomass of four native tree species in the Philippines. Agrofor Syst 78:193–202

    Article  Google Scholar 

  • SAS Institute Inc (1990) SAS/STAT user’s guide. Version 9, 4th edn. SAS Institute Inc, Cary

    Google Scholar 

  • Segura M, Kanninen M (2005) Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica 37:2–8

    Article  Google Scholar 

  • Segura M, Kanninen M, Suarez D (2006) Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agrofor Syst 68:143–150

    Article  Google Scholar 

  • Senelwa K, Sims REH (1998) Tree biomass equations for short rotation Eucalyptus grown in New Zealand. Biomass Bioenergy 13:133–140

    Article  Google Scholar 

  • Specht A, West PW (2003) Estimation of sequestered carbon on farm forest plantation in northern New South Wales, Australia. Biomass Bioenergy 25(4):363–379

    Article  Google Scholar 

  • Spiess A, Neumeyer N (2010) An evaluation of R 2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. BMC Pharmacol 10:6. http://www.biomedcentral.com/1471-2210/10/6

    Google Scholar 

  • Tewari SK, Katiyar RS, Ram B, Misra PN (2004) Effect of age and season of harvesting on the growth, coppicing characteristics and biomass productivity of Leucaena leucocephala and Vitex negundo. Biomass Bioenergy 26(3):229–234

    Article  Google Scholar 

  • Thies WG, Cunningham PG (1996) Estimating large-root biomass from stump and breast-height diameters for Douglas-fir in western Oregon. Can J For Res 26:237–243

    Article  Google Scholar 

  • Tumwebaze SB (2008) Quantifying the amount and spatial distribution of soil organic carbon under the linear simultaneous agroforestry system. Doctoral thesis, State University of New York, College of Environmental Science and Forestry, Syracuse

  • Van TK, Rayachhetry MB, Centre D (2000) Estimating aboveground biomass of Melaleuca quinquenenervia in Florida, USA. J Aquat Plant Manag 38:62–67

    Google Scholar 

  • von Ende CH (1993) Repeated-measures analysis: growth and other time-dependent measures. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman & Hall, New York, pp 113–137

    Google Scholar 

  • Youkhana A, Idol T (2009) Tree pruning mulch increases soil C and N in a shaded coffee agroecosystem in Hawaii. Soil Boil Biochem 41(12):2527–2534

    Article  CAS  Google Scholar 

  • Zianis D, Mencuccini M (2004) On simplifying allometric analysis of forest biomass. For Ecol Manag 187:311–332

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel H. Youkhana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youkhana, A.H., Idol, T.W. Allometric models for predicting above- and belowground biomass of Leucaena-KX2 in a shaded coffee agroecosystem in Hawaii. Agroforest Syst 83, 331–345 (2011). https://doi.org/10.1007/s10457-011-9403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-011-9403-6

Keywords

Navigation