Skip to main content

Advertisement

Log in

Modeling leaf maximum net photosynthetic rate of Festuca pallescens, the dominant perennial grass of Patagonian pine-based silvopastoral systems

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The integrated relationship in a simple mechanistic model between the critical environmental factors controlling leaf photosynthesis of understory species would be a useful tool to optimize the management of the silvopastoral systems. Individual effect of leaf temperature, water stress and light environment over net maximum photosynthetic rate (Pmax) was evaluated on Festuca pallescens leaves grown in a silvopastoral system of two Pinus ponderosa canopy covers (350 and 500 trees ha−1) and natural grassland. The aim was to integrate individual functions for Pmax against these environmental factors into a multiplicative model. We measured pre-dawn water potential (ψ pd), leaf temperature and net photosynthetic rate (Pn), stomatal conductance (gs) and intercellular CO2 concentration (Ci) as a function of photosynthetic photon flux density (PPFD). The highest Pmax under non-limiting conditions was 20.4 μmol CO2 m−2 s−1 and was defined as standardized dimensionless Pmax s  = 1 for comparison of environmental factors. The leaf temperature function showed an optimum range between 20.2 and 21.8°C where Pmax s  = 1. Then, Pmax s declined by an average 1 μmol CO2 m−2 s−1 C−1 from the optimum to 4.7 and 38.5°C. Pmax s decreased at a rate of 9.49 μmol CO2 m−2 s−1 MPa−1 as water potential reaches −1.9 MPa and showed a lower slope as water potential decreased down to −4.3 MPa. The light environment was estimated from hemispherical photograph analysis. Pmax s was 20% higher in leaves of open control plants than under the maximum tree canopy cover. The simple multiplicative model accounted for 0.82 of the variation in Pmax. Such a simple mechanistic model is the first step towards a more effective decision support tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Berry J, Björman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Cannell MGR, Thornley JHM (1998) Temperature and CO2 responses of leaf and canopy photosynthesis: a clarification using non-rectangular hyperbola model of photosynthesis. Ann Bot 82:883–892

    Article  Google Scholar 

  • Casson S, Gray JE (2008) Influence of environmental factors on stomatal development. New Phytol 178:9–23. doi:10.1111/j.1469-8137.2007.02351.x.PMID:18266617

    Article  PubMed  CAS  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in field? Photosynthesis and growth. Ann Bot 89:907–916

    Article  PubMed  CAS  Google Scholar 

  • Cornic C, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publishers, Netherlands, pp 347–366

    Google Scholar 

  • Defossé GE, Bertiller MB, Ares JO (1990) Above-ground phytomas dynamics in grassland steppe of Patagonia, Argentina. J Range Manag 43:157–160

    Article  Google Scholar 

  • Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New York

    Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Falk S, Maxwell DP, Laudenbach DE, Huner NPA (1996) Photosynthetic adjustment to temperature. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publishers, Netherlands, pp 367–385

    Google Scholar 

  • Faria T, Silverio D, Breia E, Cabral R, Abadia A, Abadia J, Pereira S, Chaves MM (1998) Differences in the response of carbon assimilation to summer stress (water deficit, high light and temperature) in four Mediterranean tree species. Physiol Plantarum 102(3):419–428

    Article  CAS  Google Scholar 

  • Farquhar GD, Sharkey DT (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Fernández ME, Gyenge J, Dalla Salda G, Schlichter TM (2002) Silvopastoral systems in northwestern Patagonia I: growth and photosynthesis of Stipa speciosa under different levels of Pinus ponderosa cover. Agroforest Syst 55:27–35

    Article  Google Scholar 

  • Fernández ME, Gyenge JE, Schlichter TM (2004) Shade acclimation in the forage grass Festuca pallescens: biomass allocation and foliage orientation. Agroforest Syst 60:159–166

    Article  Google Scholar 

  • Fernández ME, Gyenge J, Schlichter TM (2006a) Growth of Festuca pallescens in silvopastoral systems in Patagonia, Part 1: positive balance between competition and facilitation. Agroforest Syst 66:259–269

    Article  Google Scholar 

  • Fernández ME, Gyenge J, Schlichter TM (2006b) Growth of Festuca pallescens in silvopastoral systems in Patagonia, Part 2: parameterization of model of stomatal conductance and leaf photosynthesis. Agroforest Syst 66:271–280

    Article  Google Scholar 

  • Fernández ME, Gyenge J, Schlichter TM (2007) Balance of competitive and facilitative effects of exotic trees on a native Patagonian grass. Plant Ecol 188:67–76

    Article  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Barrios L, Ong CK (2004) Ecological interactions, management lesson and design tools in tropical agroforestry systems. Agroforest Syst 61:221–236

    Article  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade: a whole-plant perspective. Aust J Plant Physiol 15:63–92

    Article  Google Scholar 

  • Gyenge J, Fernández ME, Dalla Salda G, Schlichter TM (2002) Silvopastoral systems in Northwestern Patagonia II: water balance and water potential in a stand of Pinus ponderosa and native grassland. Agroforest Syst 55:47–55

    Article  Google Scholar 

  • Hikosaka K, Terashima I (1996) Nitrogen partitioning among photosynthetic components and its consequence in sun and shade plants. Funct Ecol 10(3):335–343

    Google Scholar 

  • Hikosaka K, Ishikawa K, Borjigidai A, Muller O, Onoda Y (2006) Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J Exp Bot 57:291–302. doi:10.1093/jxb/erj049

    Article  PubMed  CAS  Google Scholar 

  • Jobbágy EG, Sala OE (2000) Controls of grass and shrub aboveground production in the patagonian steppe. Ecol Appl 10(2):541–549. doi:10.1890/1051-0761(2000)010[0541:COGASA]2.0.CO;2

    Article  Google Scholar 

  • Laclau P (2003) Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in Northwest Patagonia. For Ecol Manag 180:317–333

    Article  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Chapter 2: photosynthesis, respiration and long-distance transport. In: Lambers H, Chapin FS III, Pons TL (eds) Plant physiological ecology. Springer-Verlag, New York Inc., pp 10–153

    Google Scholar 

  • Loranger J, Shipley B (2010) Interspecific covariation between stomatal density and other functional leaf traits in a local flora. Botany 88:30–38

    Article  Google Scholar 

  • Marshall B, Biscoe PV (1980) A model for C3 leaves describing the dependence of net photosynthesis on irradiance. I. Derivation. J Exp Bot 31:29–39

    Article  CAS  Google Scholar 

  • Montero MJ, Moreno G, Bertomeu M (2008) Light distribution in scattered-trees open woodlands in Western Spain. Agroforest Syst 73:233–244

    Article  Google Scholar 

  • Motulsky HJ, Christopoulus A (2004) Fitting models to biological data using linear and non-linear regression. GraphPad Software Inc., San Diego

    Google Scholar 

  • Ong CK, Leakey RRB (1999) Why tree-crop interactions in agroforestry appear at odds with tree-grass interactions in tropical savannahs. In: Lefroy EC, Hobbs RJ, O′Connor MH, Pate JS (eds) Agriculture as a mimic of natural ecosystems. Kluwer Academic Publishers, Dordrecht, pp 65–185 (reprinted from Agroforest Syst 45:109–129, 1999)

    Google Scholar 

  • Pearcy RW, Krall JP, Sassenrath-Cole GF (1996) Photosynthesis in fluctuating light environments. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publishers, Netherlands, pp 321–346

    Google Scholar 

  • Peri P (2005) Leaf and canopy photosynthesis models for cocksfoot (Dactylis glomerata L.) grown in a silvopastoral system. Dunken Publishers, Buenos Aires

    Google Scholar 

  • Peri P, Moot D, Mc Neil D, Varella A, Lucas R (2002a) Modeling net photosynthetic rate of field grown cooksfoot leaves under different nitrogen, water and temperature regimes. Grass Forage Sci 57(1):61–71

    Article  Google Scholar 

  • Peri P, Mc Neil D, Moot D, Varella A, Lucas R (2002b) Net photosynthetic rate of cooksfoot leaves under continuous and fluctuating shade conditions in the field. Grass Forage Sci 57(2):157–170

    Article  Google Scholar 

  • Peri P, Moot D, Mc Neil D (2003) An integrated model for predicting maximum net photosynthetic rate of cocksfoot (Dactylis glomerata) leaves in silvopastoral systems. Agroforest Syst 58:73–183

    Article  Google Scholar 

  • Peri P, Moot DJ, McNeil DL (2005) Modeling photosynthetic efficiency (α) for the light-response curve of cocksfoot leaves grown under temperate field conditions. Eur J Agron 22:277–292

    Article  CAS  Google Scholar 

  • Racine J (2006) Gnuplot 4.0: a portable interactive plotting utility. J Appl Econ 21(1):133–141. doi:10.1002/jae.885

    Article  Google Scholar 

  • Rao MR, Nair PKR, Ong CK (1998) Biophysical interaction in tropical agroforestry systems. Agroforest Syst 38:3–50

    Article  Google Scholar 

  • Seasted TR, Knapp AK (1993) Consequences of nonequilibrium resource availability across multiple time scales: the transient maxima hypothesis. Am Nat 141:621–633

    Article  Google Scholar 

  • Sheehy J (1977) Microclimate, canopy structure and photosynthesis in canopies of three contrasting temperate forage grasses: III. Canopy photosynthesis, individual leaf photosynthesis and the distribution of current assimilate. Ann Bot 41:593–604

    Google Scholar 

  • Somlo R, Durañona G, Ortiz R (1985) Valor nutritivo de especies forrajeras patagónicas. Revista de Producción Animal 5:589–605

    Google Scholar 

  • Thornley JHM (1998) Grassland dynamics: an ecosystem simulation model. CAB International, Wallingford

    Google Scholar 

  • Valladares F (2001) Características mediterráneas de la conversión fotosintética de la luz en biomasa: de órgano a organismo. In: Zamora R, Pugnaire FI (eds) Aspectos funcionales de los ecosistemas mediterráneos. CSIC-AEET, Granada, pp 67–94

    Google Scholar 

  • Valladares F, Aranda I, Sánchez-Gómez D (2004) La luz como factor ecológico y evolutivo para las plantas y su interacción con el agua. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente, EGRAF, S.A., Madrid, pp 335–369

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

This research was partially funded through the project PNFOR 3221 (INTA-National Institute for Agricultural Technology) and PICT Nº 08-09415 (Foncyt-SECyT). We gratefully acknowledge Mr R. Von Haniel, the owner of the ranch in which we carried out all the field measurement. Thanks also to Fabián Jaque and Santiago Varela for the assistance in field measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Caballé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caballé, G., Fernández, M.E., Gyenge, J. et al. Modeling leaf maximum net photosynthetic rate of Festuca pallescens, the dominant perennial grass of Patagonian pine-based silvopastoral systems. Agroforest Syst 83, 13–24 (2011). https://doi.org/10.1007/s10457-011-9382-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-011-9382-7

Keywords

Navigation