Skip to main content

Advertisement

Log in

Conservation of Mediterranean oak woodlands: understorey dynamics under different shrub management

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The effect of experimental disturbances on the dynamics of a shrub community was studied on a ‘Montado’ ecosystem, in southern Portugal. The evolution of the community physiognomy, composition and diversity were monitored after shrub clearing followed by biomass removal, deposition on soil surface and incorporation with the soil, over a 9-year period. Maximum shrub density was recorded in the first year after the disturbances, excepting in mulched plots which showed the greatest number of individuals 1 year later. The increment of shrub leaf biomass was very fast in the first 3 years, whereas wood production was slower but occurred along the whole study period. At the end of the study, leaf and wood biomass was still significantly lower than in the pre-disturbance situation. The variation pattern of leaf area index was similar to that of leaf biomass. The evolution of total plant cover and diversity was similar across treatments. The highest species richness and diversity were recorded 2 years after cutting, decreasing afterwards with the increasing dominance of shrubs. Thus it seems likely that, although a 9 year period is too short for these communities to reach steady equilibrium, they are very resistant and resilient to disturbances, as regeneration was fast and vegetation dynamics was not influenced by differences among treatments. We can conclude that shrub clearing promotes biodiversity and the time of permanence of shrub patches depends on the particular goal we want to achieve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreu V, Rubio JL, Cerni R (1998) Effects of Mediterranean shrub cover on eater erosion (Valencia, Spain). J Soil Water Conserv 53:112–120

    Google Scholar 

  • Belo A (1993) Dinâmica do banco de sementes do solo. Dissertation, University of Évora

  • Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region. Oxford University Press, New York

    Google Scholar 

  • Bonet A, Pausas JG (2004) Species richness and cover along a 60-year chronosequence in old-fields of southeastern Spain. Plant Ecol 174:257–270

    Article  Google Scholar 

  • Cable JM, Ogle K, Tyler AP, Pavao-Zuckerman MA, Huxman TE (2009) Woody plant encroachment impacts on soil carbon and microbial processes: results from a hierarchical Bayesian analysis of soil incubation data. Plant Soil 320:153–167

    Article  CAS  Google Scholar 

  • Calvo L, Tárrega R, Luís E, Valbuena L, Marcos E (2005) Recovery after experimental cutting and burning in three shrub communities. Plant Ecol 180:175–185. doi:10.1007/s11258-005-0200-z

    Article  Google Scholar 

  • Carvalhosa AB, Carvalho AMG, Alves CAM (1969) Notícia explicativa da folha 40-A—Évora da Carta Geológica de Portugal na escala de 1/50 000. Serviços Geológicos de Portugal, Lisboa

    Google Scholar 

  • Castroviejo S, et al (eds) (1986–2008) Flora Ibérica, vols I, II, III, IV, V, VI, VII (I/II), VIII, X, XIV, XV, XVIII, XXI. Real Jardín Botánico, CSIC, Madrid

  • Croitoru L (2006) How much are Mediterranean forests worth? For Policy Econ 9(5):536–545. doi:10.1016/j.forpol.2006.04.001

    Google Scholar 

  • Eichhorn MP, Paris P, Herzog F et al (2006) Silvoarable systems in Europe—past, present and future prospects. Agrofor Syst 67:29–50. doi:10.1007/s10457-005-1111-7

    Article  Google Scholar 

  • Espírito-Santo MD, Capelo JH (1998) Ten years of observation after wildfire on permanent plots in Central Mediterranean Portugal. In: Trabaud L (ed) Fire management and landscape ecology. International Association of Wildland Fire, Washington, pp 87–101

    Google Scholar 

  • Figueroa ME, Davy AJ (1991) Response of Mediterranean grassland species to changing rainfall. J Ecol 79:925–941

    Article  Google Scholar 

  • Franco JA (1971) Nova Flora de Portugal (Continente e Açores), vol I. Edição de Autor, Lisboa

    Google Scholar 

  • Franco JA (1984) Nova Flora de Portugal (Continente e Açores), vol II. Edição de Autor, Lisboa

    Google Scholar 

  • Franco JA, Rocha Afonso ML (1994–2003) Nova Flora de Portugal (Continente e Açores). Vol. III (I–III). Escolar Editora, Lisboa

  • Fulbright TE (1996) Viewpoint: a theoretical basis for planning woody plant control to maintain species diversity. J Range Manage 49:554–559

    Article  Google Scholar 

  • Garcia-Fayos P, Verdú M (1998) Soil seed bank, factors controlling germination and establishment of a Mediterranean shrub: Pistacia lentiscus L. Acta Oecol 19:357–366

    Article  Google Scholar 

  • Géhu JM, Rivas-Martínez S (1980) Notions fondamentales de phytosociologie. Syntaxonomie. J. Cramer, Vaduz

    Google Scholar 

  • Hoff C, Rambal S (2003) An examination of the interaction between climate, soil and leaf area index in a Quercus ilex ecosystem. Ann For Sci 60:153–161. doi:10.1051/forest:2003008

    Article  Google Scholar 

  • INMG (Instituto Nacional de Meteorologia e Geofísica) (1991) O Clima de Portugal. Normais Climatológicas da região de Alentejo e Algarve, correspondentes a 1951–80. Fasc XLIX, vol. 4, Lisboa

  • Joffre R, Rambal S, Ratte PJ (1999) The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agrofor Syst 45:57–79

    Article  Google Scholar 

  • Keeley JE (1986) Resilience of Mediterranean shrub communities to fire. In: Dell B, Hopkins AJM, Lamont BB (eds) Resilience in Mediterranean-type ecosystems. Dr. W. Junk, Dordrecht, pp 95–112

    Google Scholar 

  • Lavorel S (1999) Ecological diversity and resilience of Mediterranean vegetation to disturbance. Divers Distrib 5:3–13

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Pub, Oxford

    Google Scholar 

  • Maroco J (2007) Análise estatística—com utilização do SPSS, 3rd edn. Edições Sílabo, Lisboa

    Google Scholar 

  • Martin Bolaños M, Guinea López E (1949) Jarales y Jaras (Cistografia Hispanica). Ministerio de Agricultura, Madrid

    Google Scholar 

  • Montès N, Ballini C, Bonin G, Faures J (2004) A comparative study of aboveground biomass of three Mediterranean species in a post-fire succession. Acta Oecol 25:1–6. doi:10.1016/j.actao.2003.10.002

    Article  Google Scholar 

  • Moreno G, Obrador JJ (2007) Effects of trees and understory management on soil fertility and nutrient status of holm oaks in Spanish dehesas. Nutr Cycl Agroecosys 78:253–264

    Article  CAS  Google Scholar 

  • Overbeck GE, Müller SC, Pillar VD, Pfadenhauer J (2005) Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. J Veg Sci 16:655–664. doi:10.1658/1100-9233(2005)016[0655:FPDISB]2.0.CO;2

    Article  Google Scholar 

  • Papió C, Trabaud L (1991) Comparative study of the aerial structure of five shrubs of Mediterranean shrublands. For Sci 37:146–159

    Google Scholar 

  • Peet RK, Glenn-Lewin DC, Wolf JW (1983) Prediction of man’s impact on plant species diversity. A challenge for vegetation science. In: Holzner W, Werger MJA, Ikusima I (eds) Man’s impact on vegetation. Geobotany 3:41–53

  • Pérez Latorre AV, Cabezudo B (2002) Use of monocharacteristic growth forms and phenological phases to describe and differentiate plant communities in Mediterranean-type ecosystems. Plant Ecol 161:231–249

    Article  Google Scholar 

  • Pérez-Ramos IM, Zavala MA, Marañón T, Díaz-Villa MD, Valladares F (2008) Dynamics of understorey herbaceous plant diversity following shrub clearing of cork oak forests: a five-year study. For Ecol Manag 255:3242–3253

    Article  Google Scholar 

  • Pignatti S (1983) Human impact on the vegetation of the Mediterranean Basin. In: Holzner W, Werger MJA, Ikusima I (eds) Man’s impact on vegetation. Geobotany 3:151–161

  • Pinto-Correia T (2000) Future development in Portuguese rural areas: how to manage agricultural support for landscape conservation? Landsc Urban Plan 50:95–106. doi:10.1016/S0169-2046(00)00082-7

    Article  Google Scholar 

  • Plieninger T (2007) Compatibility of livestock grazing with stand regeneration in Mediterranean holm oak parklands. J Nat Conserv 15(1):1–9. doi:10.1016/j.jnc.2005.09.002

    Article  Google Scholar 

  • Plieninger T, Pulido FJ, Konold W (2003) Effects of land-use history on size structure of holm oak stands in Spanish dehesas: implications for conservation and restoration. Environ Conserv 30(1):61–70. doi:10.1017/S0376892903000055

    Article  Google Scholar 

  • Plieninger T, Pulido FJ, Schaich H (2004) Effects of land-use and landscape structure on holm oak recruitment and regeneration at farm level in Quercus ilex L. dehesas. J Arid Environ 57:345–364. doi:10.1016/S0140-1963(03)00103-4

    Article  Google Scholar 

  • Pulido F, Díaz M (2005) Regeneration of a Mediterranean oak: a whole cycle approach. Ecoscience 12:92–102

    Article  Google Scholar 

  • Pulido FJ, Díaz M, Trucios SJH (2001) Size structure and regeneration of Spanish holm oak Quercus ilex forests and dehesas: effects of agroforestry use on their long-term sustainability. For Ecol Manag 146:1–13. doi:10.1016/S0378-1127(00)00443-6

    Article  Google Scholar 

  • Quilchano C, Marañón T, Pérez-Ramos IM, Noejovich L, Valladares F, Zavala MA (2008) Patterns and ecological consequences of abiotic heterogeneity in managed cork oak forests of Southern Spain. Ecol Res 23:127–139

    Article  Google Scholar 

  • Ramos Solano B, Pereyra de la Iglesia MT, Probanza A, Lucas García JA, Megías M, Gutierrez Mañero FJ (2006) Screening for PGPR to improve growth of Cistus ladanifer seedlings for reforestation of degraded mediterranean ecosystems. Plant Soil 287:59–68

    Article  Google Scholar 

  • Raunkjaer C (1934) The life forms of plants and statistical geography. Clarendon Press, Oxford

    Google Scholar 

  • Rivas-Martínez S (2005) Discurso de apertura del Curso Académico: Real Academia Nacional de Farmacia. In: Avances en Geobotánica, Madrid. Available via http://www.globalbioclimatics.org/book/ranf2005.pdf. Accessed 22 Sept 2009

  • Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109. doi:10.1016/S0378-1127(00)00383-2

    Article  Google Scholar 

  • Schlesinger WH, Gill DS (1980) Biomass, production, and changes in the availability of light, water, and nutrients during the development of pure stands of the chaparral shrub, Ceanothus megacarpus, after fire. Ecology 61(4):781–789

    Article  Google Scholar 

  • Simões MP, Madeira M, Gazarini L (2008) The role of phenology, growth and nutrient retention during leaf fall in the competitive potential of two species of Mediterranean shrubs in the context of global climate changes. Flora 203:578–589

    Google Scholar 

  • Simões MP, Madeira M, Gazarini L (2009) Ability of Cistus L. shrubs to promote soil rehabilitation in extensive oak woodlands of Mediterranean areas. Plant Soil 323:249–265. doi:10.1007/s11104-009-9934-z

    Article  Google Scholar 

  • Tárrega R, Luis-Calabuig E, Valbuena L (2001) Eleven years of recovery dynamic after experimental burning and cutting in two Cistus communities. Acta Oecol 22:277–283. doi:10.1016/S1146-609X(01)01125-0

    Article  Google Scholar 

  • Tavşanoğlu Ç, Gürkan B (2005) Post-fire dynamics of Cistus spp. in a Pinus brutia forest. Turk J Bot 29:337–343

    Google Scholar 

  • Thanos CA, Georghiou K (1988) Ecophysiology of fire-stimulated seed germination in Cistus incanus spp. creticus (L.) heywood and C. salvifolius L. plant. Cell Environ 11:841–849

    Article  Google Scholar 

  • Trabaud L, Lepart J (1980) Diversity and stability in garrigue ecosystems after fire. Vegetatio 43:49–57. doi:10.1007/BF00121017

    Article  Google Scholar 

  • Troumbis A, Trabaud (1986) Comparison of reproductive biological attributes of two Cistus species. Acta Oecologica 7:235–250

    Google Scholar 

  • White TA, Barker DJ, Moore KJ (2004) Vegetation diversity, growth, quality and decomposition in managed grasslands. Agr Ecosyst Environ 101:73–84

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Project PAMAF no. 8004/97 and Fundação para a Ciência e Tecnologia. We thank the staff of the Botany Laboratory, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, for field and laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Pinto-Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canteiro, C., Pinto-Cruz, C., Simões, M.P. et al. Conservation of Mediterranean oak woodlands: understorey dynamics under different shrub management. Agroforest Syst 82, 161–171 (2011). https://doi.org/10.1007/s10457-011-9375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-011-9375-6

Keywords

Navigation