Agroforestry Systems

, Volume 82, Issue 1, pp 25–35 | Cite as

Folk perception of sexual dimorphism, sex ratio, and spatial repartition: implications for population dynamics of Sclerocarya birrea [(A. Rich) Hochst] populations in Benin, West Africa

  • Gerard Nounagnon Gouwakinnou
  • Anne Mette Lykke
  • Bruno Agossou Djossa
  • Brice Sinsin
Article

Abstract

In Sub-Saharan Africa, indigenous fruit trees play vital roles in nutrition and food security particularly, in food shortage times. Sclerocarya birrea subsp. birrea, an indigenous dioecious fruit tree is such a resource with strong multipurpose use characteristics in semi-arid zones of West Africa. We assessed sex ratio, spatial distribution among male and female adult trees using second-order spatial statistics and assessed folk perception of dioecism among the natural populations in protected areas and surrounding agroforestry systems. A field survey showed that 55% of interviewees were aware of sex separation in the species. Some used bark appearance to make distinction between sexes, but this morphological criterion was not consistent with statistical results. The sex ratio did not deviate significantly from 0.5 in any of the districts or land use types. Bivariate spatial analysis with pair correlation function revealed no spatial association between male and female individuals. Moreover, a strict spatial segregation of sexes was not observed even though some individuals of the same sex could sometimes be found together. Results confirmed the functional dioecy of the species and showed that the species did not display any apparent sex-specific dimorphism outside the reproduction period or any apparent sex-specific requirement for environment conditions.

Keywords

Agroforestry Spatial analysis Local perception Dioecious species Spatial segregation of sexes Protected area 

References

  1. Ackerly DD, Rankin-de-Merona JM, Rodrigues WA (1990) Tree densities and sex ratios in breeding populations of dioecious Central Amazonian Myristicaceae. J Trop Ecol 6:239–248CrossRefGoogle Scholar
  2. Adomou AC, Sinsin B, van der Maesen LJG (2006) Phytosociological and chorological approaches to phytogeography: a meso-scale study in Benin. Syst Geogr Pl 76:155–178Google Scholar
  3. Anderson GJ, Symon DE (1989) Functional dioecy and andromonoecy in Solanum. Evolution 43:204–219CrossRefGoogle Scholar
  4. Berkes F, Colding J, Folke C (2000) Rediscovery of traditional ecological knowledge as adaptive management. Ecol Appl 10:1251–1262CrossRefGoogle Scholar
  5. Bierzychudek P, Eckhart V (1988) Spatial segregation of the sexes of dioecious plants. Am Nat 132:34–43CrossRefGoogle Scholar
  6. Charlesworth D (1984) Androdioecy and the evolution of dioecy. Biol J Linn Soc 22:333–348CrossRefGoogle Scholar
  7. Chirwa PW, Akinnifesi FK (2008) Ecology and biology of Uapaca kirkiana, Strychnos cocculoides and Sclerocarya birrea in Southern Africa. In: Akinnifesi FK et al (eds) Indigenous fruit trees in the tropics: domestication, utilization and commercialization. CAB Int, Wallingford, pp 332–340Google Scholar
  8. Dawson TE, Ehleringer JR (1993) Gender specific physiology, carbon isotope discrimination, and habitat distribution in boxelder, Acer negundo. Ecology 74:798–815CrossRefGoogle Scholar
  9. Diallo OB, Bastide B, Poissonnet M, Dao M, Sanou J, Hossaert-McKey M (2006) Mise en évidence d’une androdioécie morphologique et d’une “hétérostigmatie” chez Sclerocarya birrea (A. Rich.) Hochst. Fruits 61:259–266CrossRefGoogle Scholar
  10. Diggle PJ (2003) Statistical analysis of point patterns, 2nd edn. Arnold, LondonGoogle Scholar
  11. Djossa BA, Fahr J, Wiegand T, Ayihouénou BE, Kalko EKV, Sinsin BA (2008) Land use impact on Vitellaria paradoxa C.F. Gaerten. stand structure and distribution patterns: a comparison of Biosphere Reserve of Pendjari in Atacora district in Benin. Agrofor Syst 72:205–220CrossRefGoogle Scholar
  12. Dommée B, Geslot A, Thompson JD, Reille M, Denelle N (1999) Androdioecy in the entomophilous tree Fraxinus ornus (Oleaceae). New Phytol 143:419–426CrossRefGoogle Scholar
  13. Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, OxfordGoogle Scholar
  14. Fortin MJ, Dale M (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, CambridgeGoogle Scholar
  15. Gadjil M, Berkes F, Folke C (1993) Indigenous knowledge for biodiversity conservation. Ambio 22:151–156Google Scholar
  16. Gaoué OG, Ticktin T (2009) Fulani knowledge of the ecological impacts of Khaya senegalensis (Meliaceae) foliage harvest in Benin and its implications for sustainable harvest. Econ Bot 63(3):256–270CrossRefGoogle Scholar
  17. Gibson DJ, Menges ES (1994) Population structure and spatial pattern in the dioecious shrub Ceratiola ericoides. J Vegetation Sci 5:337–346CrossRefGoogle Scholar
  18. Gilchrist G, Mallory M, Merkel F (2005) Can local ecological knowledge contribute to wildlife management? Case studies of migratory birds. Ecol Soc 10(1):20. Available via http://www.ecologyandsociety.org/vol10/iss1/art20/. Accessed 14 December 2009
  19. Glew RS, VanderJagt DJ, Huang YS, Chuang LT, Bosse R, Glew RH (2004) Nutritional analysis of the edible pit of Sclerocarya birrea in the Republic of Niger (Daniya, Haussa). J Food Compost Anal 17:99–111CrossRefGoogle Scholar
  20. Goreaud F, Pelissier R (2003) Avoiding misinterpretation of biotic interactions with the intertype K–12–function: population independence vs. random labeling hypotheses. J Vegetation Sci 14:681–692Google Scholar
  21. Gouwakinnou GN, Kindomohou V, Sinsin B (2009a) Utilisation and local knowledge on Sclerocarya birrea (Anacardiaceae) by the rural population around W National Park in Karimama District (Benin). In: Parrotta JA, Oteng-Yeboah A, Cobbinah J (eds) Traditional forest-related knowledge and sustainable forest management in Africa. IUFRO World Series 23, pp 49–56Google Scholar
  22. Gouwakinnou GN, Kindomihou V, Assogbadjo AE, Sinsin B (2009b) Population structure and abundance of Sclerocarya birrea (A. Rich) Hochst subsp. birrea in two contrasting land-use systems in Benin. Int J Biodvers Conserv 1(6):194–201Google Scholar
  23. Hall JB (2002) Sclerocarya birrea (A. Rich) Hochst. In: Oyen LPA, Lemmens RHMJ (eds) Record from protabase. PROTA, WageningenGoogle Scholar
  24. Huntington HP, Callaghan TV, Gearheard SF, Krupnik I (2004) Matching traditional and scientific observations to detect environmental change: a discussion on arctic terrestrial ecosystems. Ambio Special Report 13:18–23Google Scholar
  25. Klinkhamer PGL, De Jong TJ (2002) Sex allocation in hermaphrodite plants. In: Hardy I (ed) Sex ratios: concepts and research methods. Cambridge University Press, Cambridge, pp 333–348CrossRefGoogle Scholar
  26. Korpelainen H (1994) Sex ratios and resource allocation among sexually reproducing plants of Rubus chamaemorus. Ann Bot 74:627–632CrossRefGoogle Scholar
  27. Maranz S, Wiesman Z (2003) Evidence for indigenous selection and distribution of the shea tree, Vitellaria paradoxa, and its potential significance to prevailing parkland savanna tree patterns in sub-Saharan Africa north of the equator. J Biogeogr 30:1505–1516CrossRefGoogle Scholar
  28. Melamphy MN, Howe HF (1977) Sex ratio in the tropical tree Triplarias americana (polygonaceae). Evolution 31:867–872CrossRefGoogle Scholar
  29. Morellato LPC (2004) Phenology, sex ratio, and spatial distribution among dioecious species of Trichillia (Meliaceae). Plant Biol 6:491–497PubMedCrossRefGoogle Scholar
  30. Muok BO, Owuor B (2005) Sclerocarya birrea the underutilized resource: propagation, establishment, management and utilization. KEFRI/DFID/University of Wales, NairobiGoogle Scholar
  31. National Research Council (2008) Lost crops of Africa: Fruits. Volume III. The National Academy Press, WashingtonGoogle Scholar
  32. Nghitoolwa E, Hall JB, Sinclair FL (2003) Population status and gender imbalance of the Marula tree, Sclerocarya birrea subsp. caffra in Northern Namibia. Agrofor Syst 59:289–294CrossRefGoogle Scholar
  33. Obeso JR, Alvarez-Santullano M, Retuerto R (1998) Sex ratio, size distributions and sexual dimorphism in the dioecious tree Ilex aquifolium (Aquifoliaceae). Am J Bot 85(11):1602–1608CrossRefGoogle Scholar
  34. Opel PA, Bawa KS (1978) Sex ratio in tropical forest trees. Evolution 32:812–821CrossRefGoogle Scholar
  35. Pannell JR (2002) The evolution and maintenance of androdioecy. Annu Rev Ecol Syst 33:397–425CrossRefGoogle Scholar
  36. Percy DM, Cronk QCB (1997) Conservation in relation to mating system in Nesohedyotis arborea (Rubiaceae), a rare endemic tree from St Helena. Biol Conserv 80:135–145CrossRefGoogle Scholar
  37. Pierotti R, Wildcat D (2000) Commentary: traditional ecological knowledge: the third alternative. Ecol Appl 10:1333–1340CrossRefGoogle Scholar
  38. Queenborough SA, Burslem DFRP, Garwood NC, Valencia R (2007) Determinants of biased sex ratios and inter-sex costs of reproduction in dioecious tropical forest trees. Am J Bot 94(1):67–78CrossRefGoogle Scholar
  39. Renner S, Ricklefs R (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606CrossRefGoogle Scholar
  40. Riginos C, Milton SJ, Wiegand T (2005) Context-dependent negative and positive interactions between adult shrubs and seedlings in a semi-arid shrubland. J Vegetation Sci 16:331–340CrossRefGoogle Scholar
  41. Sapir Y, Mazer SJ, Holzapfel C (2008) Sex ratio. In: Jørgensen SE, Brian BD (eds) Encyclopedia of ecology I. Elsevier, Amsterdam, pp 3243–3248CrossRefGoogle Scholar
  42. SAS Institute Inc (2004) SAS OnlineDoc 9.1. SAS Institute Inc, CaryGoogle Scholar
  43. Shackleton SE, Shackleton CM, Cunningham T, Lombard C, Sullivan C, Netshiluvhi T (2002) Knowledge on Sclerocarya birrea subsp caffra with emphasis on it as a non timber forests product in South and southern Africa: a summary. Part1: Taxonomy, ecology and role in rural livelihoods. S Afr For J 194:27–41Google Scholar
  44. Stehlik I, Friedman J, Barrett SCH (2008) Environmental influence on primary sex ratio in a dioecious plant. Proc Natl Acad Sci 105:10847–10852PubMedCrossRefGoogle Scholar
  45. Stoyan D, Stoyan H (1994) Fractals, random shapes and point fields. Methods of geometrical statistics. Wiley, ChichesterGoogle Scholar
  46. Thomas SC, LaFrankie JV (1993) Sex, size, and interyear variation in flowering among dioecious trees of the Malayan rain forest. Ecology 74:1529–1537CrossRefGoogle Scholar
  47. Vedeld P, Angelsen A, Bojö J, Sjaastad E, Berg GK (2007) Forest environmental incomes and the rural poor. Forest Pol Econ 9:869–879CrossRefGoogle Scholar
  48. Verdú M (2004) Physiological and reproductive differences between hermaphrodites and males in the androdioecious plant Fraxinus ornus. Oikos 105:239–246CrossRefGoogle Scholar
  49. Verdú M, García-Fayos P (1998) Female biased sex ratios in Pistacia lentiscus L. (Anacardiaceae). Plant Ecol 135:95–101CrossRefGoogle Scholar
  50. Wheelwright NT, Logan BA (2004) Previous-year reproduction reduces photosynthetic capacity and slows lifetime growth in females of a neotropical tree. Proc Natl Acad Sci 101:8051–8055PubMedCrossRefGoogle Scholar
  51. Wiegand T, Moloney K (2004) Rings, circles and null-models for point pattern analysis in ecology. Oikos 104:209–229CrossRefGoogle Scholar
  52. Wilson K, Hardy I (2002) Statistical analysis of sex ratios: an introduction. In: Hardy I (ed) Sex ratios: concepts and research methods. Cambridge University Press, Cambridge, pp 48–92CrossRefGoogle Scholar
  53. Yamashita N, Abe T (2002) Size distribution, growth and inter-year variation in sex expression of Bischofia javanica, an Invasive Tree. Ann Bot 90:599–605PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Gerard Nounagnon Gouwakinnou
    • 1
  • Anne Mette Lykke
    • 2
  • Bruno Agossou Djossa
    • 1
  • Brice Sinsin
    • 1
  1. 1.Laboratory of Applied Ecology, Faculty of Agronomic SciencesUniversity of Abomey-CalaviCotonouBenin
  2. 2.Department of Terrestrial Ecology, National Environmental Research InstituteAarhus UniversitySilkeborgDenmark

Personalised recommendations