Skip to main content
Log in

Light distribution in scattered-trees open woodlands in Western Spain

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

We have studied the percentage of radiation transmitted through the tree canopy to the underlying pasture and crops in dehesas of Southwest Spain by means of fish-eye photographs taken at different distances from the tree. Thirty-six trees were studied covering all the diametric classes (0.1–14 m canopy width) of two stands, with mean density of 19 mature trees ha−1. Intercepted light decreased with distance following an logistic curve, indicating a rapid increase in the light availability with distance from the tree. For mature trees, radiation was constant beyond 20 m. Applying a multivariable regression light equation, distance, stem diameter and canopy width explained more than 88% of the light variability for each orientation studied. A simple model was built up from light equations, tree growth curves and allometric relationships. From this model, we have estimated that radiation available for crops and pasture decreased up to 21% due to the presence of trees in a standard dehesa with 24 mature trees ha−1 and 13% of canopy cover. In addition, we have generated different radiation maps of virtual dehesas differing in tree age, density and arrangement, which could be useful to determine optimal tree planting schemes and consequent pruning and thinning regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

FEP:

Fish eye photograph

I:

Intercepted radiation

D:

Distance from the trunk

DBH:

Diameter at breast height of the tree trunk

Cw :

Canopy width

Th :

Tree height

Ch :

Canopy height

References

  • Bellot J, Maestre FT, Hernández N (2004) Spatio-temporal dynamics of chlorophyll fluorescence in a semi-arid Mediterranean shrubland. J Arid Environ 58:295–308

    Article  Google Scholar 

  • Bellow JG, Nair PKR (2003) Comparing common methods for assessing understory light availability in shaded-perennial agroforestry systems. Agric For Meteorol 114:197–211

    Article  Google Scholar 

  • Díaz M, Campos P, Pulido FJ (1997) The Spanish dehesas: a diversity in land-use and wildlife. In: Pain DJ, Pienkowski MW (eds) Farming and birds in Europe: the common agricultural policy and its implications for bird conservation. Academic press, Cambridge, pp 178–209

    Google Scholar 

  • Dupraz C, Fournier C, Balvay Y, Dauzat M, Pesteur S, Simorte V (1999) Influence de quatre annés de culture intercalaire de blé de colza sur la croissance de noyers hybrides en agroforesterie. In: Bois et Fôrets des Agriculteurs. Actes du colloque de Clermont-Ferrand des 20 et 21 October 1999. Cemagref Editions, France, pp 95–114

  • Eichhorn MP, Paris P, Herzog F, Incoll LD, Liagre F, Mantzanas K, Mayus M, Moreno G, Papanastasis VP, Pilbeam DJ, Pisanelli A, Dupraz C (2004) Silvoarable systems in Europe—past, present and future prospects. Agroforest Syst 67:29–50

    Article  Google Scholar 

  • Etienne M (2005) Silvopastoral management in temperate and mediterranean areas. Stakes, practices and socio-economic contraints. In: Mosquera-Losada MR, Riguero-Rodriguez A, McAdam J (eds) Silvopastoralism and sustainable land management. CAB International, Wallingford, pp 299–311

    Google Scholar 

  • Frazer GW, Canham CD (1999) GLA: gap light analyzer, Copyright © 1999: Simon Frazer University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York, USA

  • Gallardo A (2003) Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean dehesa. Pedobiologia 47:117–125

    Article  CAS  Google Scholar 

  • Golden Software I. (1999) SURFER: 2D and 3D surface modelling package, Copyright © 1993–1999: Golden software, Inc. Colorado, USA

  • Gordon AM, Newman SM (1997) Temperate agroforestry systems. CAB International, Oxon, p 288

    Google Scholar 

  • Joffre R (1987) Contraites du milieu et réponses de la végétation herbacée dans les dehesas de la Sierra Norte (Andalouisie, Espagne). Thèse doctorat (unpublished), CNRS-CEPE, Montpellier, France, 201 pp

  • Jose S, Gillespie AR, Pallardy SG (2004) Interspecific interactions in temperate agroforestry. Agroforest Syst 61:237–255

    Article  Google Scholar 

  • Knowles RL, Horvath GC, Carter MA, Hawke MF (1999) Developing a canopy closure model to predict overstorey/understorey relationships in Pinus radiata silvopastoral systems. Agroforest Syst 43:109–119

    Article  Google Scholar 

  • Larcher W (1995) Physiological plant ecology. Springer-Verlag, Berlin

    Google Scholar 

  • Ludwig F, de Kroon H, Berendse F, Prins HHT (2004) The influence of savanna trees on nutrient, water and light availability and the understorey vegetation. Plant Ecol 170:93–105

    Article  Google Scholar 

  • Marañón T (1986) Plant species richness and canopy effect in the savanna-like “dehesa” of SW-Spain. Ecol Mediterr 12:131–141

    Google Scholar 

  • McPherson GR (1997) Ecology and management of north American Savannas. University of Arizona Press, Tucson

    Google Scholar 

  • Miah MG, Garrity DP, Aragon ML (1995) Ligth availability to the understorey annual crops in an agroforestry system. In: Sinoquet H, Cruz P (eds) Ecophysiology of tropical intercropping systems. INRA, Paris, pp 99–107

    Google Scholar 

  • Miguel E, Pointereau P, Steiner C (2000) Los árboles en el espacio agrario. Importancia hidrológica y ecológica. Banco Santander-Central Hispano, Madrid, p 93

    Google Scholar 

  • Moreno G (2008) Response of understorey forage to multiple tree effects in Iberian dehesas. Agric Ecosyst Environ 123:239–244

    Article  Google Scholar 

  • Moreno G, Cubera E (2008) Impact of stand density on water status and leaf gas exchange in Quercus ilex. For Ecol Manage 254:74–84

    Article  Google Scholar 

  • Moreno G, Obrador J, García A (2007a) Impact of evergreen oaks on soil fertility and crop production in intercropped dehesas. Agr Ecosyst Environ 119:270–280

    Article  CAS  Google Scholar 

  • Moreno G, Obrador JJ, García E, Cubera E, Montero MJ, Pulido F, Dupraz C (2007b) Driving competitive and facilitative interactions in Oak Dehesas through management practices. Agroforest Syst 70:25–40

    Article  Google Scholar 

  • Nobel PS (2005) Physiochemical and environmental plant physiology, 3rd edn. Elsevier, Academic Press, Burlington

    Google Scholar 

  • Ong CK, Black CR, Marshall FM, Corlett JE (1996) Principles of resources capture and utilization of light and water. In: Ong CK, Huxley P (eds) Tree-crop interactions a physiological approach. CAB International, Wallingford, pp 73–158

    Google Scholar 

  • Pérez-Corona ME, García-Ciudad A, García-Criado B, Vázquez-Aldana B (1995) Patterns of aboveground herbage production and nutritional quality structure on semiarid grasslands. Commun Soil Sci Plant Anal 26:1323–1341

    Article  Google Scholar 

  • Plieninger T, Pulido JF, Konold W (2003) Effects of land-use history on size structure of Holm oak stands in Spanish dehesas: implications for conservation and restoration. Environ Conserv 30:61–70

    Article  Google Scholar 

  • Puerto A, Rico M (1988) Influence of tree canopy (Quercus rotundifolia Lam. and Quercus pyrenaica Willd.) on field succession in marginal areas of Central-Western Spain. Acta Oecol-Oecol Plant 9:337–358

    Google Scholar 

  • Puerto A, Rico M (1989) Influence of tree canopy (Quercus rotundifolia Lam.) on content in surface soil water in Mediterranean grasslands. Ecology (CSSR) 8:225–238

  • Puerto A, Rico M, Matías MD, García JD (1990) Variation in structure and diversity in Mediterranean grasslands related to trophic status and grazing intensity. J Veg Sci 1:445–452

    Article  Google Scholar 

  • Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Ann Rev Ecol Syst 28:517–544

    Article  Google Scholar 

  • Sibbald AR, Sinclair FL (1990) A review of agroforestry research in progress in the U.K. Agrof Abst 3(4):149–164

    Google Scholar 

  • Sinoquet H, Rakocevic M, Varlet-Grancher C (2000) Comparison of models for daily light partitioning in multispecies canopies. Agric Forest Meteorol 101:251–263

    Article  Google Scholar 

  • Stevenson AC, Harrison RJ (1992) Ancient forests in Spain: a model for land-use and dry forest management in south-west Spain from 4000 BC to 1900 AD. Proc Prehist Soc 58:227–247

    Google Scholar 

  • Thevathasan NV, Gordon AM (2004) Ecology of tree intercropping systems in the North temperate region: experiences from Southern Ontario, Canada. Agroforest Syst 61:257–268

    Article  Google Scholar 

  • Trichon V, Walter JN, Laumonier Y (1998) Identifying spatial patterns in the tropical rain forest structure using hemispherical photographs. Plant Ecol 137:227–244

    Article  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the E.U. (SAFE project, QLX-2001-0560), the Spanish government (MICASA project, AGL-2001-0850) and the regional government of Extremadura (CASA project, 2PR02C012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montero, M.J., Moreno, G. & Bertomeu, M. Light distribution in scattered-trees open woodlands in Western Spain. Agroforest Syst 73, 233–244 (2008). https://doi.org/10.1007/s10457-008-9143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-008-9143-4

Keywords

Navigation