Agroforestry Systems

, Volume 66, Issue 1, pp 23–42 | Cite as

Emergy Evaluation of Lacandon Maya Indigenous Swidden Agroforestry in Chiapas, Mexico

  • Stewart A.W. Diemont
  • Jay F. MartinEmail author
  • Samuel I. Levy-Tacher


The Lacandon Maya of Chiapas, Mexico practice a system of swidden agroforestry that mimics the surrounding ecosystem and its successional stages. Their fields rotate through grass (milpa), and shrub (acahual) and forest fallow stages that regenerate soil, nutrients, and seed banks. Each successional stage, including the fallow stages, produces over 25 types of crops, raw materials, and medicines. Lacandon traditionally do not use fertilizers, pesticides or herbicides. An emergy evaluation of Lacandon agroforestry was conducted to quantify resource use, productivity, environmental impact, and overall sustainability. Six systems were analyzed. The Emergy Yield Ratios of the systems ranged from 4.5 to 50.7, which indicated a high level of output per purchased investments. The agroforestry systems had minimal environmental impacts as shown by Environmental Loading Ratios between 0.03 and 0.38. The Emergy Sustainability Index (ESI) of the systems ranged from 12 to 1740, indicating a high level of sustainability. The high ESI values were partially due to a large fraction of renewable resources that varied from 0.72 to 0.97. ESI was dependent upon land area devoted to the system for each family, where greater land area resulted in higher values of ESI. Labor invested did not exhibit a direct effect on sustainability.

Key words

Agroecosystem Energy flow Milpa Resource use Sustainability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altieri, M.A. 1995Agroecology: The Science of Sustainable AgricultureWestview Press, Inc. BoulderCO, USA433Google Scholar
  2. Alvarez, N.L., Naughton-Treves, L. 2003Linking national agrarian policy to deforestation in the Peruvian Amazon: a case study of Tambopata1986–1997Ambio32269274PubMedGoogle Scholar
  3. Brown, M.T., Herendeen, R.A. 1996Embodied energy analysis and emergy analysis: a comparative viewEcol. Econ.19219235CrossRefGoogle Scholar
  4. Brown, M.T., McClanahan, T.R. 1996EMergy analysis perspectives of Thailand and Mekong River dam proposalsEcol. Model.91105130CrossRefGoogle Scholar
  5. Drechsel, P., Gyiele, L., Kunze, D., Cofie, O. 2001Population density, soil nutrient depletion, and economic growth in sub-Saharan AfricaEcol. Econ.38251258CrossRefGoogle Scholar
  6. Gurr, G.M., Wratten, S.D., Luna, J.M. 2003Multi-function agricultural biodiversity: pest management and other benefitsBasic Appl. Ecol.4107116CrossRefGoogle Scholar
  7. Hong-fang, L.L., Sheng-fang, L.A.N., Lei, L.I., Shao-lin, P.E.N.G. 2003New EmergyIndices for sustainable developmentJ. Environ. Sci. (China)15562569Google Scholar
  8. Johnston, K.J. 2003The intensification of pre-industrial cereal agriculture in the tropics: Boserup, cultivation lengthening, and the Classic MayaJ. Anthropol. Archaeol.22126161CrossRefGoogle Scholar
  9. Lal, R. 1995Erosion-crop productivity relationships for soils of AfricaSoil Sci. Soc. Am. J.59661667Google Scholar
  10. Lefroy, E., Rydberg, T. 2003Emergy evaluation of three cropping systems in southwestern AustraliaEcol. Model.161195211CrossRefGoogle Scholar
  11. Levy, T.S.I. 2000Sucesión causada por roza-tumba-quema en las selvas de Lacanhá, ChiapasDoctoral Dissertation, Institution de Ensenanza e Investigacion en Ciencias Agricolas, Instituto de Recursos NaturalesMontecilloTexcocoMexico165Google Scholar
  12. Levy, T.S.I.J.R., Aguirre Rivera, M.M., Martínez, R., Durán, Y.A.F. 2002Caracterización del uso tradicional de la flora espontánea en la comunidad Lacandona de Lacanhá, Chiapas, MéxicoInterciencia27512520Google Scholar
  13. Liebman, M. 1995Polyculture cropping systemsAltieri, M.A. eds. Agroecology: The Science of Sustainable AgricultureWestview PressBoulderCO, USA205218Google Scholar
  14. Lyman, J.K., Sanders, J.H., Mason, S.C. 1986Economics and risk in multiple croppingFrancis, C.A. eds. Multiple Cropping SystemsMacMillanNew York, USA250266Google Scholar
  15. Martin, J.F. 2002Emergy valuation of diversions of river water to marshes in the Mississippi River DeltaEcol. Eng.18165186CrossRefGoogle Scholar
  16. McGee, R.J. 2002Watching Lacandon MayaAllyn and BaconBoston194Google Scholar
  17. Nations, J.D., Nigh, R. 1980Evolutionary potential of Lacandon Maya sustained-yield tropical forest agricultureJ. Anthropol. Res.36130Google Scholar
  18. Netting, R.M. 1993Smallholders, Householders: Farm Families and the Ecology of IntensiveSustainable AgricultureStanford University PressStanford CA USA389Google Scholar
  19. Odum, H.T. 1988Self-organization, transformity, and informationScience24211321139Google Scholar
  20. Odum, H.T. 1996Environmental Accounting: Emergy and Environmental Decision MakingWileyNew York, USA370Google Scholar
  21. Panzieri, M., Marchettini, N., Bastianoni, S. 2002A thermodynamic methodology to assess how different cultivation methods affect sustainability of agricultural systemsInt. J. Sustain. Develop. World Ecol.918Google Scholar
  22. Pimentel, D., Pimentel, M. 1996Food, Energy, and SocietyUniversity Press of ColoradoNiwot CO, USA363Google Scholar
  23. Quintana-Ascencio P.F., Gonzalez-Espinosa M., Ramirez-Marcial N., Dominguez-Vazquez G. and Martinez-Ico M. 1996. Soil seed bank and regeneration of tropical rain forest from milpa fields at the Selva LacandonaChiapas, Mexico. Biotropica 28: 2.Google Scholar
  24. Ram, R. 1997Tropics and economic development: an empirical investigationWorld Develop.2514431452CrossRefGoogle Scholar
  25. Rice, D.S. 1996Paleolimnological analysis in the central Peten, GuatemalaFedick, S.L. eds. The Managed Mosaic: Ancient Maya Agricultural and Resource UseUniversity of Utah PressSalt Lake City193206Google Scholar
  26. Rydberg, T., Jansen, J. 2002Comparison of horse and tractor traction using emergy ananlysisEcol. Eng.191328CrossRefGoogle Scholar
  27. Tilley, D.R., Swank, W.T. 2003EMERGY-based environmental systems assessments of a multi-purpose temperate mixed-forest watershed of the southern Appalachian Mountains, USAJ. Environ. Manage69213227CrossRefPubMedGoogle Scholar
  28. Trujillo, H.A.G. 1998Sustainability of ecotourism and traditional agricultural practices in Chiapas, MexicoEnvironmental Engineering SciencesUniversity of FloridaGainesville246Ph.D. dissertationGoogle Scholar
  29. Ulgiati, S., Brown, M.T. 1998Monitoring patterns of sustainability in natural and man-made ecosystemsEcol. Model.1082336CrossRefGoogle Scholar
  30. Ulgiati, S., Odum, H.T., Bastianoni, S. 1994Emergy useenvironmental loading and sustainability. An emergy analysis of ItalyEcol. Model.73215268CrossRefGoogle Scholar
  31. Webster, D. 2002The Fall of the Ancient Maya: Solving the Mystery of the Maya CollapseThames and Hudson Ltd.LondonGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Stewart A.W. Diemont
    • 1
  • Jay F. Martin
    • 1
    Email author
  • Samuel I. Levy-Tacher
    • 2
  1. 1.Department of Food, Agricultural, and Biological Engineering, Ecological Engineering GroupThe Ohio State UniversityColumbusUSA
  2. 2.Department of Ecology and Terrestrial Systems, Division of Conservation and Biodiversity, El Colegio De La Frontera Sur; Carretera Panamericana y Periférico Sur Barrio de María AuxiliadoraSan Cristóbal de Las CasasChiapasMexico

Personalised recommendations