Skip to main content
Log in

Nectins and Nectin-like molecules drive vascular development and barrier function

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

A Correction to this article was published on 29 April 2023

This article has been updated

Abstract

Angiogenesis, barriergenesis, and immune cell migration are all key physiological events that are dependent on the functional characteristics of the vascular endothelium. The protein family of Nectins and Nectin-like molecules (Necls) is a group of cell adhesion molecules that are widely expressed by different endothelial cell types. The family includes four Nectins (Nectin-1 to -4) and five Necls (Necl-1 to -5) that either interact with each other by forming homo- and heterotypical interactions or bind to ligands expressed within the immune system. Nectin and Necl proteins are mainly described to play a role in cancer immunology and in the development of the nervous system. However, Nectins and Necls are underestimated players in the formation of blood vessels, their barrier properties, and in guiding transendothelial migration of leukocytes. This review summarizes their role in supporting the endothelial barrier through their function in angiogenesis, cell–cell junction formation, and immune cell migration. In addition, this review provides a detailed overview of the expression patterns of Nectins and Necls in the vascular endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. Son Y, Lee B, Choi YJ, Jeon SA, Kim JH, Lee HK, Kwon SM, Cho JY (2016) Nectin-2 (CD112) is expressed on outgrowth endothelial cells and regulates cell proliferation and angiogenic function. PLoS ONE. https://doi.org/10.1371/journal.pone.0163301

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yamana S, Tokiyama A, Mizutani K, Hirata K, Takai Y, Rikitake Y (2015) The cell adhesion molecule Necl-4/CADM4 serves as a novel regulator for contact inhibition of cell movement and proliferation. PLoS ONE. https://doi.org/10.1371/journal.pone.0124259

    Article  PubMed  PubMed Central  Google Scholar 

  3. Devilard E, Xerri L, Dubreuil P, Lopez M, Reymond N (2013) Nectin-3 (CD113) interacts with Nectin-2 (CD112) to promote lymphocyte transendothelial migration. PLoS ONE. https://doi.org/10.1371/journal.pone.0077424

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mandai K, Rikitake Y, Mori M, Takai Y (2015) Nectins and nectin-like molecules in development and disease. Curr Top Dev Biol 112:197–231. https://doi.org/10.1016/bs.ctdb.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  5. Mizutani K, Miyata M, Shiotani H, Kameyama T, Takai Y (2021) Nectins and Nectin-like molecules in synapse formation and involvement in neurological diseases. Mol Cell Neurosci. https://doi.org/10.1016/j.mcn.2021.103653

    Article  PubMed  Google Scholar 

  6. Takai Y, Miyoshi J, Ikeda W, Ogita H (2008) Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 9(8):603–615. https://doi.org/10.1038/nrm2457

    Article  CAS  PubMed  Google Scholar 

  7. Sanchez-Correa B, Valhondo I, Hassouneh F, Lopez-Sejas N, Pera A, Bergua JM, Arcos MJ, Banas H, Casas-Aviles I, Duran E, Alonso C, Solana R, Tarazona R (2019) DNAM-1 and the TIGIT/PVRIG/TACTILE axis: novel immune checkpoints for natural killer cell-based cancer immunotherapy. Cancers (Basel). https://doi.org/10.3390/cancers11060877

    Article  PubMed  Google Scholar 

  8. Chatterjee S, Sinha S, Kundu CN (2021) Nectin cell adhesion molecule-4 (NECTIN-4): a potential target for cancer therapy. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2021.174516

    Article  PubMed  Google Scholar 

  9. De Spiegelaere W, Casteleyn C, Van den Broeck W, Plendl J, Bahramsoltani M, Simoens P, Djonov V, Cornillie P (2012) Intussusceptive angiogenesis: a biologically relevant form of angiogenesis. J Vasc Res 49(5):390–404. https://doi.org/10.1159/000338278

    Article  PubMed  Google Scholar 

  10. Ucuzian AA, Gassman AA, East AT, Greisler HP (2010) Molecular mediators of angiogenesis. J Burn Care Res 31(1):158–175. https://doi.org/10.1097/BCR.0b013e3181c7ed82

    Article  PubMed  Google Scholar 

  11. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887. https://doi.org/10.1016/j.cell.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  12. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. https://doi.org/10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660. https://doi.org/10.1038/nm0603-653

    Article  CAS  PubMed  Google Scholar 

  14. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177. https://doi.org/10.1083/jcb.200302047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780. https://doi.org/10.1038/nature05571

    Article  CAS  PubMed  Google Scholar 

  16. Soga N, Namba N, McAllister S, Cornelius L, Teitelbaum SL, Dowdy SF, Kawamura J, Hruska KA (2001) Rho family GTPases regulate VEGF-stimulated endothelial cell motility. Exp Cell Res 269(1):73–87. https://doi.org/10.1006/excr.2001.5295

    Article  CAS  PubMed  Google Scholar 

  17. Tawa H, Rikitake Y, Takahashi M, Amano H, Miyata M, Satomi-Kobayashi S, Kinugasa M, Nagamatsu Y, Majima T, Ogita H, Miyoshi J, Hirata K, Takai Y (2010) Role of afadin in vascular endothelial growth factor- and sphingosine 1-phosphate-induced angiogenesis. Circ Res 106(11):1731–1742. https://doi.org/10.1161/circresaha.110.216747

    Article  CAS  PubMed  Google Scholar 

  18. Zankov DP, Ogita H (2015) Actin-tethered junctional complexes in angiogenesis and lymphangiogenesis in association with vascular endothelial growth factor. Biomed Res Int. https://doi.org/10.1155/2015/314178

    Article  PubMed  PubMed Central  Google Scholar 

  19. Prisco AR, Hoffmann BR, Kaczorowski CC, McDermott-Roe C, Stodola TJ, Exner EC, Greene AS (2016) Tumor necrosis factor α regulates endothelial progenitor cell migration via CADM1 and NF-kB. Stem Cells 34(7):1922–1933. https://doi.org/10.1002/stem.2339

    Article  CAS  PubMed  Google Scholar 

  20. Kinugasa M, Amano H, Satomi-Kobayashi S, Nakayama K, Miyata M, Kubo Y, Nagamatsu Y, Kurogane Y, Kureha F, Yamana S, Hirata K, Miyoshi J, Takai Y, Rikitake Y (2012) Necl-5/poliovirus receptor interacts with VEGFR2 and regulates VEGF-induced angiogenesis. Circ Res 110(5):716–726. https://doi.org/10.1161/circresaha.111.256834

    Article  CAS  PubMed  Google Scholar 

  21. Fujito T, Ikeda W, Kakunaga S, Minami Y, Kajita M, Sakamoto Y, Monden M, Takai Y (2005) Inhibition of cell movement and proliferation by cell-cell contact-induced interaction of Necl-5 with nectin-3. J Cell Biol 171(1):165–173. https://doi.org/10.1083/jcb.200501090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bekes I, Löb S, Holzheu I, Janni W, Baumann L, Wöckel A, Wulff C (2019) Nectin-2 in ovarian cancer: how is it expressed and what might be its functional role? Cancer Sci 110(6):1872–1882. https://doi.org/10.1111/cas.13992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamana S, Tokiyama A, Fujita H, Terao Y, Horibe S, Sasaki N, Satomi-Kobayashi S, Hirata KI, Rikitake Y (2017) Necl-4 enhances the PLCgamma-c-Raf-MEK-ERK pathway without affecting internalization of VEGFR2. Biochem Biophys Res Commun 490(2):169–175. https://doi.org/10.1016/j.bbrc.2017.05.185

    Article  CAS  PubMed  Google Scholar 

  24. Ikeda W, Kakunaga S, Takekuni K, Shingai T, Satoh K, Morimoto K, Takeuchi M, Imai T, Takai Y (2004) Nectin-like molecule-5/Tage4 enhances cell migration in an integrin-dependent, Nectin-3-independent manner. J Biol Chem 279(17):18015–18025. https://doi.org/10.1074/jbc.M312969200

    Article  CAS  PubMed  Google Scholar 

  25. Amano H, Ikeda W, Kawano S, Kajita M, Tamaru Y, Inoue N, Minami Y, Yamada A, Takai Y (2008) Interaction and localization of Necl-5 and PDGF receptor beta at the leading edges of moving NIH3T3 cells: Implications for directional cell movement. Genes Cells 13(3):269–284. https://doi.org/10.1111/j.1365-2443.2008.01167.x

    Article  CAS  PubMed  Google Scholar 

  26. Minami Y, Ikeda W, Kajita M, Fujito T, Amano H, Tamaru Y, Kuramitsu K, Sakamoto Y, Monden M, Takai Y (2007) Necl-5/poliovirus receptor interacts in cis with integrin alphaVbeta3 and regulates its clustering and focal complex formation. J Biol Chem 282(25):18481–18496. https://doi.org/10.1074/jbc.M611330200

    Article  CAS  PubMed  Google Scholar 

  27. Kajita M, Ikeda W, Tamaru Y, Takai Y (2007) Regulation of platelet-derived growth factor-induced Ras signaling by poliovirus receptor Necl-5 and negative growth regulator Sprouty2. Genes Cells 12(3):345–357. https://doi.org/10.1111/j.1365-2443.2007.01062.x

    Article  CAS  PubMed  Google Scholar 

  28. Ueda Y, Kedashiro S, Maruoka M, Mizutani K, Takai Y (2018) Roles of the third Ig-like domain of Necl-5/PVR and the fifth Ig-like domain of the PDGF receptor in its signaling. Genes Cells 23(3):214–224. https://doi.org/10.1111/gtc.12564

    Article  CAS  PubMed  Google Scholar 

  29. Kanzaki N, Ogita H, Komura H, Ozaki M, Sakamoto Y, Majima T, Ijuin T, Takenawa T, Takai Y (2008) Involvement of the nectin-afadin complex in PDGF-induced cell survival. J Cell Sci 121(Pt 12):2008–2017. https://doi.org/10.1242/jcs.024620

    Article  CAS  PubMed  Google Scholar 

  30. Russo E, Runge P, Jahromi NH, Naboth H, Landtwing A, Montecchi R, Leicht N, Hunter MC, Takai Y, Halin C (2021) CD112 regulates angiogenesis and T cell entry into the spleen. Cells. https://doi.org/10.3390/cells10010169

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tetzlaff F, Adam MG, Feldner A, Moll I, Menuchin A, Rodriguez-Vita J, Sprinzak D, Fischer A (2018) MPDZ promotes DLL4-induced Notch signaling during angiogenesis. Elife. https://doi.org/10.7554/eLife.32860

    Article  PubMed  PubMed Central  Google Scholar 

  32. Siddharth S, Nayak A, Das S, Nayak D, Panda J, Wyatt MD, Kundu CN (2018) The soluble nectin-4 ecto-domain promotes breast cancer induced angiogenesis via endothelial Integrin-β4. Int J Biochem Cell Biol 102:151–160. https://doi.org/10.1016/j.biocel.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  33. Tanaka Y, Murata M, Tanegashima K, Oda Y, Ito T (2022) Nectin cell adhesion molecule 4 regulates angiogenesis through Src signaling and serves as a novel therapeutic target in angiosarcoma. Sci Rep 12(1):4031. https://doi.org/10.1038/s41598-022-07727-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Okumura N, Kagami T, Fujii K, Nakahara M, Koizumi N (2018) Involvement of nectin-afadin in the adherens junctions of the corneal endothelium. Cornea 37(5):633–640. https://doi.org/10.1097/ico.0000000000001526

    Article  PubMed  Google Scholar 

  35. Reymond N, Imbert AM, Devilard E, Fabre S, Chabannon C, Xerri L, Farnarier C, Cantoni C, Bottino C, Moretta A, Dubreuil P, Lopez M (2004) DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med 199(10):1331–1341. https://doi.org/10.1084/jem.20032206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fabre-Lafay S, Monville F, Garrido-Urbani S, Berruyer-Pouyet C, Ginestier C, Reymond N, Finetti P, Sauvan R, Adelaide J, Geneix J, Lecocq E, Popovici C, Dubreuil P, Viens P, Goncalves A, Charafe-Jauffret E, Jacquemier J, Birnbaum D, Lopez M (2007) Nectin-4 is a new histological and serological tumor associated marker for breast cancer. BMC Cancer 7:73. https://doi.org/10.1186/1471-2407-7-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tatsumi K, Taatjes DJ, Wadsworth MP, Bouchard BA, Bovill EG (2012) Cell adhesion molecule 1 (CADM1) is ubiquitously present in the endothelium and smooth muscle cells of the human macro- and micro-vasculature. Histochem Cell Biol 138(5):815–820. https://doi.org/10.1007/s00418-012-1024-2

    Article  CAS  PubMed  Google Scholar 

  38. Hasstedt SJ, Bezemer ID, Callas PW, Vossen CY, Trotman W, Hebbel RP, Demers C, Rosendaal FR, Bovill EG (2009) Cell adhesion molecule 1: a novel risk factor for venous thrombosis. Blood 114(14):3084–3091. https://doi.org/10.1182/blood-2009-05-219485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY (2009) Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Expert Rev Mol Med. https://doi.org/10.1017/s1462399409001112

    Article  PubMed  PubMed Central  Google Scholar 

  40. Steinbacher T, Ebnet K (2018) The regulation of junctional actin dynamics by cell adhesion receptors. Histochem Cell Biol 150(4):341–350. https://doi.org/10.1007/s00418-018-1691-8

    Article  CAS  PubMed  Google Scholar 

  41. Sato T, Irie K, Ooshio T, Ikeda W, Takai Y (2004) Involvement of heterophilic trans-interaction of Necl-5/Tage4/PVR/CD155 with nectin-3 in formation of nectin- and cadherin-based adherens junctions. Genes Cells 9(9):791–799. https://doi.org/10.1111/j.1365-2443.2004.00763.x

    Article  CAS  PubMed  Google Scholar 

  42. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84(3):345–357. https://doi.org/10.1016/s0092-8674(00)81279-9

    Article  CAS  PubMed  Google Scholar 

  43. Aijaz S, Balda MS, Matter K (2006) Tight junctions: molecular architecture and function. Int Rev Cytol 248:261–298. https://doi.org/10.1016/s0074-7696(06)48005-0

    Article  CAS  PubMed  Google Scholar 

  44. Muller WA (2003) Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24(6):327–334. https://doi.org/10.1016/s1471-4906(03)00117-0

    Article  CAS  PubMed  Google Scholar 

  45. Wallez Y, Huber P (2008) Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta 1778(3):794–809. https://doi.org/10.1016/j.bbamem.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  46. Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5(4):261–270. https://doi.org/10.1038/nrm1357

    Article  CAS  PubMed  Google Scholar 

  47. Sakakibara S, Maruo T, Miyata M, Mizutani K, Takai Y (2018) Requirement of the F-actin-binding activity of l-afadin for enhancing the formation of adherens and tight junctions. Genes Cells 23(3):185–199. https://doi.org/10.1111/gtc.12566

    Article  CAS  PubMed  Google Scholar 

  48. Martinez-Rico C, Pincet F, Perez E, Thiery JP, Shimizu K, Takai Y, Dufour S (2005) Separation force measurements reveal different types of modulation of E-cadherin-based adhesion by nectin-1 and -3. J Biol Chem 280(6):4753–4760. https://doi.org/10.1074/jbc.M412544200

    Article  CAS  PubMed  Google Scholar 

  49. Tsukasaki Y, Kitamura K, Shimizu K, Iwane AH, Takai Y, Yanagida T (2007) Role of multiple bonds between the single cell adhesion molecules, nectin and cadherin, revealed by high sensitive force measurements. J Mol Biol 367(4):996–1006. https://doi.org/10.1016/j.jmb.2006.12.022

    Article  CAS  PubMed  Google Scholar 

  50. Ooshio T, Kobayashi R, Ikeda W, Miyata M, Fukumoto Y, Matsuzawa N, Ogita H, Takai Y (2010) Involvement of the interaction of afadin with ZO-1 in the formation of tight junctions in Madin-Darby canine kidney cells. J Biol Chem 285(7):5003–5012. https://doi.org/10.1074/jbc.M109.043760

    Article  CAS  PubMed  Google Scholar 

  51. Hulpiau P, van Roy F (2009) Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 41(2):349–369. https://doi.org/10.1016/j.biocel.2008.09.027

    Article  CAS  PubMed  Google Scholar 

  52. Gottardi CJ, Gumbiner BM (2004) Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol 167(2):339–349. https://doi.org/10.1083/jcb.200402153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tachibana K, Nakanishi H, Mandai K, Ozaki K, Ikeda W, Yamamoto Y, Nagafuchi A, Tsukita S, Takai Y (2000) Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. J Cell Biol 150(5):1161–1176. https://doi.org/10.1083/jcb.150.5.1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rehm K, Panzer L, van Vliet V, Genot E, Linder S (2013) Drebrin preserves endothelial integrity by stabilizing nectin at adherens junctions. J Cell Sci 126(Pt 16):3756–3769. https://doi.org/10.1242/jcs.129437

    Article  CAS  PubMed  Google Scholar 

  55. Rehm K, Linder S (2017) Drebrin’s role in the maintenance of endothelial integrity. Adv Exp Med Biol 1006:347–360. https://doi.org/10.1007/978-4-431-56550-5_21

    Article  CAS  PubMed  Google Scholar 

  56. Cervero P, Vrenken K, Klose M, Rehm K, Linder S (2021) Nectin stabilization at adherens junctions is counteracted by Rab5a-dependent endocytosis. Eur J Cell Biol. https://doi.org/10.1016/j.ejcb.2021.151184

    Article  PubMed  Google Scholar 

  57. Sakakibara S, Sakane A, Sasaki T, Shinohara M, Maruo T, Miyata M, Mizutani K, Takai Y (2022) Identification of lysophosphatidic acid in serum as a factor that promotes epithelial apical junctional complex organization. J Biol Chem. https://doi.org/10.1016/j.jbc.2022.102426

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yamada T, Kuramitsu K, Rikitsu E, Kurita S, Ikeda W, Takai Y (2013) Nectin and junctional adhesion molecule are critical cell adhesion molecules for the apico-basal alignment of adherens and tight junctions in epithelial cells. Genes Cells 18(11):985–998. https://doi.org/10.1111/gtc.12091

    Article  CAS  PubMed  Google Scholar 

  59. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435. https://doi.org/10.1038/nature07201

    Article  CAS  PubMed  Google Scholar 

  60. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7(9):678–689. https://doi.org/10.1038/nri2156

    Article  CAS  PubMed  Google Scholar 

  61. Mueller SN, Gebhardt T, Carbone FR, Heath WR (2013) Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 31:137–161. https://doi.org/10.1146/annurev-immunol-032712-095954

    Article  CAS  PubMed  Google Scholar 

  62. Cavallaro U, Dejana E (2011) Adhesion molecule signalling: not always a sticky business. Nat Rev Mol Cell Biol 12(3):189–197. https://doi.org/10.1038/nrm3068

    Article  CAS  PubMed  Google Scholar 

  63. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7(10):803–815. https://doi.org/10.1038/nri2171

    Article  CAS  PubMed  Google Scholar 

  64. Somers WS, Tang J, Shaw GD, Camphausen RT (2000) Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 103(3):467–479. https://doi.org/10.1016/s0092-8674(00)00138-0

    Article  CAS  PubMed  Google Scholar 

  65. Kansas GS (1996) Selectins and their ligands: current concepts and controversies. Blood 88(9):3259–3287

    Article  CAS  PubMed  Google Scholar 

  66. Rosen SD (2004) Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol 22:129–156. https://doi.org/10.1146/annurev.immunol.21.090501.080131

    Article  CAS  PubMed  Google Scholar 

  67. Yang J, Furie BC, Furie B (1999) The biology of P-selectin glycoprotein ligand-1: its role as a selectin counterreceptor in leukocyte-endothelial and leukocyte-platelet interaction. Thromb Haemost 81(1):1–7

    Article  CAS  PubMed  Google Scholar 

  68. Sperandio M, Smith ML, Forlow SB, Olson TS, Xia L, McEver RP, Ley K (2003) P-selectin glycoprotein ligand-1 mediates L-selectin-dependent leukocyte rolling in venules. J Exp Med 197(10):1355–1363. https://doi.org/10.1084/jem.20021854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McEver RP (2002) Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol 14(5):581–586. https://doi.org/10.1016/s0955-0674(02)00367-8

    Article  CAS  PubMed  Google Scholar 

  70. Lawrence MB, Kansas GS, Kunkel EJ, Ley K (1997) Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L, P, E). J Cell Biol 136(3):717–727. https://doi.org/10.1083/jcb.136.3.717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen S, Springer TA (1999) An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J Cell Biol 144(1):185–200. https://doi.org/10.1083/jcb.144.1.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shulman Z, Cohen SJ, Roediger B, Kalchenko V, Jain R, Grabovsky V, Klein E, Shinder V, Stoler-Barak L, Feigelson SW, Meshel T, Nurmi SM, Goldstein I, Hartley O, Gahmberg CG, Etzioni A, Weninger W, Ben-Baruch A, Alon R (2011) Transendothelial migration of lymphocytes mediated by intraendothelial vesicle stores rather than by extracellular chemokine depots. Nat Immunol 13(1):67–76. https://doi.org/10.1038/ni.2173

    Article  CAS  PubMed  Google Scholar 

  73. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687. https://doi.org/10.1016/s0092-8674(02)00971-6

    Article  CAS  PubMed  Google Scholar 

  74. Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339(1):269–280. https://doi.org/10.1007/s00441-009-0834-6

    Article  CAS  PubMed  Google Scholar 

  75. Bachmann M, Kukkurainen S, Hytönen VP, Wehrle-Haller B (2019) Cell Adhesion by Integrins. Physiol Rev 99(4):1655–1699. https://doi.org/10.1152/physrev.00036.2018

    Article  CAS  PubMed  Google Scholar 

  76. Ingber DE (2002) Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91(10):877–887. https://doi.org/10.1161/01.res.0000039537.73816.e5

    Article  CAS  PubMed  Google Scholar 

  77. Carman CV, Springer TA (2003) Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr Opin Cell Biol 15(5):547–556. https://doi.org/10.1016/j.ceb.2003.08.003

    Article  CAS  PubMed  Google Scholar 

  78. Constantin G, Majeed M, Giagulli C, Piccio L, Kim JY, Butcher EC, Laudanna C (2000) Chemokines trigger immediate beta2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13(6):759–769. https://doi.org/10.1016/s1074-7613(00)00074-1

    Article  CAS  PubMed  Google Scholar 

  79. Dustin ML, Springer TA (1988) Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J Cell Biol 107(1):321–331. https://doi.org/10.1083/jcb.107.1.321

    Article  CAS  PubMed  Google Scholar 

  80. Shamri R, Grabovsky V, Gauguet J-M, Feigelson S, Manevich E, Kolanus W, Robinson MK, Staunton DE, von Andrian UH, Alon R (2005) Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol 6(5):497–506. https://doi.org/10.1038/ni1194

    Article  CAS  PubMed  Google Scholar 

  81. Soroka V, Kasper C, Poulsen FM (2010) Structural biology of NCAM. Adv Exp Med Biol 663:3–22. https://doi.org/10.1007/978-1-4419-1170-4_1

    Article  CAS  PubMed  Google Scholar 

  82. Johnson JP, Bar-Eli M, Jansen B, Markhof E (1997) Melanoma progression-associated glycoprotein MUC18/MCAM mediates homotypic cell adhesion through interaction with a heterophilic ligand. Int J Cancer 73(5):769–774. https://doi.org/10.1002/(sici)1097-0215(19971127)73:5%3c769::aid-ijc26%3e3.0.co;2-#

    Article  CAS  PubMed  Google Scholar 

  83. Degen WG, van Kempen LC, Gijzen EG, van Groningen JJ, van Kooyk Y, Bloemers HP, Swart GW (1998) MEMD, a new cell adhesion molecule in metastasizing human melanoma cell lines, is identical to ALCAM (activated leukocyte cell adhesion molecule). Am J Pathol 152(3):805–813

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Polte T, Newman W, Gopal TV (1990) Full length vascular cell adhesion molecule 1 (VCAM-1). Nucleic Acids Res 18(19):5901–5901. https://doi.org/10.1093/nar/18.19.5901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Albelda SM, Muller WA, Buck CA, Newman PJ (1991) Molecular and cellular properties of PECAM-1 (endoCAM/CD31): a novel vascular cell-cell adhesion molecule. J Cell Biol 114(5):1059–1068. https://doi.org/10.1083/jcb.114.5.1059

    Article  CAS  PubMed  Google Scholar 

  86. Shaw SK, Ma S, Kim MB, Rao RM, Hartman CU, Froio RM, Yang L, Jones T, Liu Y, Nusrat A, Parkos CA, Luscinskas FW (2004) Coordinated redistribution of leukocyte LFA-1 and endothelial cell ICAM-1 accompany neutrophil transmigration. J Exp Med 200(12):1571–1580. https://doi.org/10.1084/jem.20040965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Barreiro O, Yanez-Mo M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, Furthmayr H, Sanchez-Madrid F (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157(7):1233–1245. https://doi.org/10.1083/jcb.200112126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9(6):446–454. https://doi.org/10.1038/nrm2406

    Article  CAS  PubMed  Google Scholar 

  89. Shulman Z, Shinder V, Klein E, Grabovsky V, Yeger O, Geron E, Montresor A, Bolomini-Vittori M, Feigelson SW, Kirchhausen T, Laudanna C, Shakhar G, Alon R (2009) Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin. Immunity 30(3):384–396. https://doi.org/10.1016/j.immuni.2008.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Carman CV, Sage PT, Sciuto TE, de la Fuente MA, Geha RS, Ochs HD, Dvorak HF, Dvorak AM, Springer TA (2007) Transcellular diapedesis is initiated by invasive podosomes. Immunity 26(6):784–797. https://doi.org/10.1016/j.immuni.2007.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Woodfin A, Voisin MB, Beyrau M, Colom B, Caille D, Diapouli FM, Nash GB, Chavakis T, Albelda SM, Rainger GE, Meda P, Imhof BA, Nourshargh S (2011) The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol 12(8):761–769. https://doi.org/10.1038/ni.2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Giannotta M, Trani M, Dejana E (2013) VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell 26(5):441–454. https://doi.org/10.1016/j.devcel.2013.08.020

    Article  CAS  PubMed  Google Scholar 

  93. Mamdouh Z, Chen X, Pierini LM, Maxfield FR, Muller WA (2003) Targeted recycling of PECAM from endothelial surface-connected compartments during diapedesis. Nature 421(6924):748–753. https://doi.org/10.1038/nature01300

    Article  CAS  PubMed  Google Scholar 

  94. Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8(11):1223–1234. https://doi.org/10.1038/ncb1486

    Article  CAS  PubMed  Google Scholar 

  95. Muller WA (2016) Transendothelial migration: unifying principles from the endothelial perspective. Immunol Rev 273(1):61–75. https://doi.org/10.1111/imr.12443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wolburg H, Wolburg-Buchholz K, Engelhardt B (2005) Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol 109(2):181–190. https://doi.org/10.1007/s00401-004-0928-x

    Article  PubMed  Google Scholar 

  97. Mamdouh Z, Mikhailov A, Muller WA (2009) Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment. J Exp Med 206(12):2795–2808. https://doi.org/10.1084/jem.20082745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sullivan DP, Seidman MA, Muller WA (2013) Poliovirus receptor (CD155) regulates a step in transendothelial migration between PECAM and CD99. Am J Pathol 182(3):1031–1042. https://doi.org/10.1016/j.ajpath.2012.11.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Manes TD, Pober JS (2011) Identification of endothelial cell junctional proteins and lymphocyte receptors involved in transendothelial migration of human effector memory CD4+ T cells. J Immunol 186(3):1763–1768. https://doi.org/10.4049/jimmunol.1002835

    Article  CAS  PubMed  Google Scholar 

  100. Rossignoli A, Shang MM, Gladh H, Moessinger C, Foroughi Asl H, Talukdar HA, Franzen O, Mueller S, Bjorkegren JL, Folestad E, Skogsberg J (2017) Poliovirus receptor-related 2: a cholesterol-responsive gene affecting atherosclerosis development by modulating leukocyte migration. Arterioscler Thromb Vasc Biol 37(3):534–542. https://doi.org/10.1161/atvbaha.116.308715

    Article  CAS  PubMed  Google Scholar 

  101. Boles KS, Barchet W, Diacovo T, Cella M, Colonna M (2005) The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood 106(3):779–786. https://doi.org/10.1182/blood-2005-02-0817

    Article  CAS  PubMed  Google Scholar 

  102. Patino-Lopez G, Hevezi P, Lee J, Willhite D, Verge GM, Lechner SM, Ortiz-Navarrete V, Zlotnik A (2006) Human class-I restricted T cell associated molecule is highly expressed in the cerebellum and is a marker for activated NKT and CD8+ T lymphocytes. J Neuroimmunol 171(1–2):145–155. https://doi.org/10.1016/j.jneuroim.2005.09.017

    Article  CAS  PubMed  Google Scholar 

  103. Arase N, Takeuchi A, Unno M, Hirano S, Yokosuka T, Arase H, Saito T (2005) Heterotypic interaction of CRTAM with Necl2 induces cell adhesion on activated NK cells and CD8+ T cells. Int Immunol 17(9):1227–1237. https://doi.org/10.1093/intimm/dxh299

    Article  CAS  PubMed  Google Scholar 

  104. Takeuchi A, Badr Mel S, Miyauchi K, Ishihara C, Onishi R, Guo Z, Sasaki Y, Ike H, Takumi A, Tsuji NM, Murakami Y, Katakai T, Kubo M, Saito T (2016) CRTAM determines the CD4+ cytotoxic T lymphocyte lineage. J Exp Med 213(1):123–138. https://doi.org/10.1084/jem.20150519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cortez VS, Cervantes-Barragan L, Song C, Gilfillan S, McDonald KG, Tussiwand R, Edelson BT, Murakami Y, Murphy KM, Newberry RD, Sibley LD, Colonna M (2014) CRTAM controls residency of gut CD4+CD8+ T cells in the steady state and maintenance of gut CD4+ Th17 during parasitic infection. J Exp Med 211(4):623–633. https://doi.org/10.1084/jem.20130904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Giangreco A, Hoste E, Takai Y, Rosewell I, Watt FM (2012) Epidermal Cadm1 expression promotes autoimmune alopecia via enhanced T cell adhesion and cytotoxicity. J Immunol 188(3):1514–1522. https://doi.org/10.4049/jimmunol.1003342

    Article  CAS  PubMed  Google Scholar 

  107. Tezuka K, Suzuki M, Sato R, Kawarada S, Terasaki T, Uchida Y (2022) Activation of Annexin A2 signaling at the blood-brain barrier in a mouse model of multiple sclerosis. J Neurochem 160(6):662–674. https://doi.org/10.1111/jnc.15578

    Article  CAS  PubMed  Google Scholar 

  108. Samanta D, Almo SC (2015) Nectin family of cell-adhesion molecules: structural and molecular aspects of function and specificity. Cell Mol Life Sci 72(4):645–658. https://doi.org/10.1007/s00018-014-1763-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the Research Foundation of Flanders (FWO Vlaanderen), Bijzonder Onderzoeksfonds (BOF) UHasselt, and Belgian Charcot Foundation.

Funding

Fonds Wetenschappelijk Onderzoek, Bijzonder Onderzoeksfonds UHasselt, Universiteit Hasselt, Vrije Universiteit Amsterdam, KU Leuven, and Belgian Charcot Foundation

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DH; Writing of the original draft: DH, CRM, and HK; Literature search: DH, CRM, and HK; Visualization: DH; Writing, reviewing, and editing of the manuscript: BB, AB, and HEdV. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Bieke Broux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The co-author name Helga E. de Vries is corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermans, D., Rodriguez-Mogeda, C., Kemps, H. et al. Nectins and Nectin-like molecules drive vascular development and barrier function. Angiogenesis 26, 349–362 (2023). https://doi.org/10.1007/s10456-023-09871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-023-09871-y

Keywords

Navigation