Skip to main content

Tissue oxygenation stabilizes neovessels and mitigates hemorrhages in human atherosclerosis-induced angiogenesis

Abstract

Progression of atherosclerosis is associated with a maladaptive form of angiogenesis which contributes to intraplaque hemorrhage and plaque disruption. Hypoxia has been implicated in mechanisms of angiogenic neovessel fragility and atherosclerotic plaque destabilization. We used ex vivo and in vivo models to characterize the effect of oxygen (O2) on the formation, stability and tendency to bleed of human plaque-induced neovessels. Plaque explants potently stimulated the ex vivo angiogenic response of rat aortic rings at atmospheric O2 levels. Severe hypoxia (1% O2) inhibited plaque-induced angiogenesis and pericyte recruitment causing neovessel breakdown, whereas increasing O2 levels dose dependently enhanced pericyte numbers and neovessel stability. Plaque fragments implanted subcutaneously with or without aortic rings in SCID mice stimulated the host angiogenic response with plaques causing minimal or no hemorrhages and plaques co-implanted with aortic rings causing marked hemorrhages. Plaque/aortic ring-induced hemorrhages were reduced in mice exposed to moderate hyperoxia (50% O2). Hyperoxia downregulated expression of the hypoxia-sensitive genes Ca9, Ca12 and VegfA and increased influx into implants of mesenchymal cells reactive for the pericyte marker NG2. In both ex vivo and in vivo models, O2 promoted expression of vasostabilizing genes required for pericyte recruitment (Angpt1, Pdgfb), basement membrane assembly (Col4A1), and tight junction formation (Cldn5 and/or Ocln). Our results suggest that formation of neovessels that are stable, pericyte-coated, and resistant to bleeding requires adequate tissue oxygenation. Understanding the mechanisms by which O2 stabilizes neovessels and mitigates neovessel bleeding may lead to new therapies for the prevention of atherosclerosis complications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061. https://doi.org/10.1161/01.ATV.0000178991.71605.18

    CAS  Article  PubMed  Google Scholar 

  2. Guo L, Harari E, Virmani R, Finn AV (2017) Linking hemorrhage, angiogenesis, macrophages, and iron metabolism in atherosclerotic vascular diseases. Arterioscler Thromb Vasc Biol 37:e33–e39. https://doi.org/10.1161/ATVBAHA.117.309045

    CAS  Article  PubMed  Google Scholar 

  3. Sluimer JC, Kolodgie FD, Bijnens AP, Maxfield K, Pacheco E, Kutys B, Duimel H, Frederik PM, van Hinsbergh VW, Virmani R, Daemen MJ (2009) Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll 53:1517–1527. https://doi.org/10.1016/j.jacc.2008.12.056

    CAS  Article  Google Scholar 

  4. Moreno PR, Purushothaman KR, Zias E, Sanz J, Fuster V (2006) Neovascularization in human atherosclerosis. Curr Mol Med 6:457–477. https://doi.org/10.2174/156652406778018635

    CAS  Article  PubMed  Google Scholar 

  5. Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J (2018) Vasa Vasorum angiogenesis: key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front Immunol 9:706. https://doi.org/10.3389/fimmu.2018.00706

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Sluimer JC, Gasc JM, van Wanroij JL, Kisters N, Groeneweg M, Sollewijn Gelpke MD, Cleutjens JP, van den Akker LH, Corvol P, Wouters BG, Daemen MJ, Bijnens AP (2008) Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol 51:1258–1265. https://doi.org/10.1016/j.jacc.2007.12.025

    CAS  Article  PubMed  Google Scholar 

  7. Björnheden T, Levin M, Evaldsson M, Wiklund O (1999) Evidence of hypoxic areas within the arterial wall in vivo. Arterioscler Thromb Vasc Biol 19:870–876. https://doi.org/10.1161/01.atv.19.4.870

    Article  PubMed  Google Scholar 

  8. Nie X, Randolph GJ, Elvington A, Bandara N, Zheleznyak A, Gropler RJ, Woodard PK, Lapi SE (2016) Imaging of hypoxia in mouse atherosclerotic plaques with (64)Cu-ATSM. Nucl Med Biol 43:534–542. https://doi.org/10.1016/j.nucmedbio.2016.05.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Marsch E, Sluimer JC, Daemen MJ (2013) Hypoxia in atherosclerosis and inflammation. Curr Opin Lipidol 24:393–400. https://doi.org/10.1097/MOL.0b013e32836484a4

    CAS  Article  PubMed  Google Scholar 

  10. Ferns GAA, Heikal L (2017) Hypoxia in atherogenesis. Angiology 68:472–493. https://doi.org/10.1177/0003319716662423

    CAS  Article  PubMed  Google Scholar 

  11. Semenza GL (2014) Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol 76:39–56. https://doi.org/10.1146/annurev-physiol-021113-170322

    CAS  Article  PubMed  Google Scholar 

  12. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845. https://doi.org/10.1038/359843a0

    CAS  Article  PubMed  Google Scholar 

  13. Inoue M, Itoh H, Ueda M, Naruko T, Kojima A, Komatsu R, Doi K, Ogawa Y, Tamura N, Takaya K, Igaki T, Yamashita J, Chun TH, Masatsugu K, Becker AE, Nakao K (1998) Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation 98:2108–16. https://doi.org/10.1161/01.cir.98.20.2108

    CAS  Article  PubMed  Google Scholar 

  14. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309. https://doi.org/10.1126/science.2479986

    CAS  Article  PubMed  Google Scholar 

  15. Aplin AC, Nicosia RF (2016) Hypoxia paradoxically inhibits the angiogenic response of isolated vessel explants while inducing overexpression of vascular endothelial growth factor. Angiogenesis 19:133–146. https://doi.org/10.1007/s10456-015-9493-2

    CAS  Article  PubMed  Google Scholar 

  16. He M, Ma S, Cai Q, Wu Y, Shao C, Kong H, Wang H, Zeng X, Xie W (2018) Hypoxia induces the dysfunction of human endothelial colony-forming cells via HIF-1α signaling. Respir Physiol Neurobiol 247:87–95. https://doi.org/10.1016/j.resp.2017.09.013

    CAS  Article  PubMed  Google Scholar 

  17. Tasev D, Dekker-Vroling L, van Wijhe M, Broxterman HJ, Koolwijk P, van Hinsbergh VWM (2018) Hypoxia impairs initial outgrowth of endothelial colony forming cells and reduces their proliferative and sprouting potential. Front Med (Lausanne) 5:356. https://doi.org/10.3389/fmed.2018.00356

    Article  Google Scholar 

  18. Nauta TD, Duyndam MC, Weijers EM, van Hinsbergh VM, Koolwijk P (2016) HIF-2α expression regulates sprout formation into 3D fibrin matrices in prolonged hypoxia in human microvascular endothelial cells. PLoS One 11:e0160700

    Article  Google Scholar 

  19. Aplin AC, Nicosia RF (2019) The plaque-aortic ring assay: a new method to study human atherosclerosis-induced angiogenesis. Angiogenesis 22:421–431. https://doi.org/10.1007/s10456-019-09667-z

    CAS  Article  PubMed  Google Scholar 

  20. Aplin AC, Nicosia RF (2015) The rat aortic ring model of angiogenesis. Methods Mol Biol 1214:255–264. https://doi.org/10.1007/978-1-4939-1462-3_16

    CAS  Article  PubMed  Google Scholar 

  21. Fogel E, Aplin AC, Nicosia RF (2007) Aortic rings stimulate inflammatory angiogenesis in a subcutaneous implant in vivo model. Angiogenesis 10:287–295. https://doi.org/10.1007/s10456-007-9082-0

    Article  PubMed  Google Scholar 

  22. Gelati M, Aplin AC, Fogel E, Smith KD, Nicosia RF (2008) The angiogenic response of the aorta to injury and inflammatory cytokines requires macrophages. J Immunol 181:5711–5719. https://doi.org/10.4049/jimmunol.181.8.5711

    CAS  Article  PubMed  Google Scholar 

  23. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. https://doi.org/10.1186/gb-2002-3-7-research0034

    Article  PubMed  PubMed Central  Google Scholar 

  24. Grimes DR, Kannan P, Warren DR, Markelc B, Bates R, Muschel R, Partridge M (2016) Estimating oxygen distribution from vasculature in three-dimensional tumour tissue. J R Soc Interface 13:20160070

    Article  Google Scholar 

  25. Beasley NJ, Wykoff CC, Watson PH, Leek R, Turley H, Gatter K, Pastorek J, Cox GJ, Ratcliffe P, Harris AL (2001) Carbonic anhydrase IX, an endogenous hypoxia marker, expression in head and neck squamous cell carcinoma and its relationship to hypoxia, necrosis, and microvessel density. Cancer Res 61:5262–5267

    CAS  PubMed  Google Scholar 

  26. Waheed A, Sly WS (2017) Carbonic anhydrase XII functions in health and disease. Gene 623:33–40. https://doi.org/10.1016/j.gene.2017.04.027

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Sluimer JC, Daemen MJ (2009) Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 218:7–29. https://doi.org/10.1002/path.2518

    Article  PubMed  Google Scholar 

  28. Aplin AC, Zhu WH, Fogel E, Nicosia RF (2009) Vascular regression and survival are differentially regulated by MT1-MMP and TIMPs in the aortic ring model of angiogenesis. Am J Physiol Cell Physiol 297:C471–C480. https://doi.org/10.1152/ajpcell.00019.2009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Stratman AN, Davis GE (2012) Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 18:68–80. https://doi.org/10.1017/S1431927611012402

    CAS  Article  PubMed  Google Scholar 

  30. Wang YL, Hui YN, Guo B, Ma JX (2007) Strengthening tight junctions of retinal microvascular endothelial cells by pericytes under normoxia and hypoxia involving angiopoietin-1 signal way. Eye (Lond) 21:1501–1510. https://doi.org/10.1038/sj.eye.6702716

    CAS  Article  Google Scholar 

  31. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523. https://doi.org/10.1161/01.RES.0000182903.16652.d7

    CAS  Article  PubMed  Google Scholar 

  32. Papapetropoulos A, García-Cardeña G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC (1999) Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 79:213–223

    CAS  PubMed  Google Scholar 

  33. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180. https://doi.org/10.1016/s0092-8674(00)81813-9

    CAS  Article  PubMed  Google Scholar 

  34. Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–553. https://doi.org/10.1083/jcb.153.3.543

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vazquez-Liebanas E, Nahar K, Bertuzzi G, Keller A, Betsholtz C, Mäe MA (2021) Adult-induced genetic ablation distinguishes PDGFB roles in blood-brain barrier maintenance and development. J Cereb Blood Flow Metab. https://doi.org/10.1177/0271678X211056395

    Article  PubMed  PubMed Central  Google Scholar 

  36. de Vries MR, Parma L, Peters HAB, Schepers A, Hamming JF, Jukema JW, Goumans MJTH, Guo L, Finn AV, Virmani R, Ozaki CK, Quax PHA (2019) Blockade of vascular endothelial growth factor receptor 2 inhibits intraplaque haemorrhage by normalization of plaque neovessels. J Intern Med 285:59–74. https://doi.org/10.1111/joim.12821

    CAS  Article  PubMed  Google Scholar 

  37. Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114:5091–5101. https://doi.org/10.1182/blood-2009-05-222364

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Park YS, Kim G, Jin YM, Lee JY, Shin JW, Jo I (2016) Expression of angiopoietin-1 in hypoxic pericytes: regulation by hypoxia-inducible factor-2α and participation in endothelial cell migration and tube formation. Biochem Biophys Res Commun 469:263–269. https://doi.org/10.1016/j.bbrc.2015.11.108

    CAS  Article  PubMed  Google Scholar 

  39. Kourembanas S, Hannan RL, Faller DV (1990) Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest 86:670–674. https://doi.org/10.1172/JCI114759

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Tajima R, Kawaguchi N, Horino Y, Takahashi Y, Toriyama K, Inou K, Torii S, Kitagawa Y (2001) Hypoxic enhancement of type IV collagen secretion accelerates adipose conversion of 3T3-L1 fibroblasts. Biochim Biophys Acta 1540:179–187. https://doi.org/10.1016/s0167-4889(01)00114-8

    CAS  Article  PubMed  Google Scholar 

  41. Yamamoto A, Takahashi H, Kojima Y, Tsuda Y, Morio Y, Muramatsu M, Fukuchi Y (2008) Downregulation of angiopoietin-1 and Tie2 in chronic hypoxic pulmonary hypertension. Respiration 75:328–338. https://doi.org/10.1159/000112432

    CAS  Article  PubMed  Google Scholar 

  42. Koto T, Takubo K, Ishida S, Shinoda H, Inoue M, Tsubota K, Okada Y, Ikeda E (2007) Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol 170:1389–1397. https://doi.org/10.2353/ajpath.2007.060693

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Vesselinovitch D, Wissler RW, Fisher-Dzoga K, Hughes R, Dubien L (1974) Regression of atherosclerosis in rabbits I: treatment with low-fat diet, hyperoxia and hypolipidemic agents. Atherosclerosis 19:259–275. https://doi.org/10.1016/0021-9150(74)90061-6

    CAS  Article  PubMed  Google Scholar 

  44. Okamoto R, Hatani M, Tsukitani M, Suehiro A, Fujino M, Imai N, Takano S, Watanabe Y, Fukuzaki H (1983) The effect of oxygen on the development of atherosclerosis in WHHL rabbits. Atherosclerosis 47:47–53. https://doi.org/10.1016/0021-9150(83)90070-9

    CAS  Article  PubMed  Google Scholar 

  45. Marsch E, Theelen TL, Demandt JA, Jeurissen M, van Gink M, Verjans R, Janssen A, Cleutjens JP, Meex SJ, Donners MM, Haenen GR, Schalkwijk CG, Dubois LJ, Lambin P, Mallat Z, Gijbels MJ, Heemskerk JW, Fisher EA, Biessen EA, Janssen BJ, Daemen MJ, Sluimer JC (2014) Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis. Arterioscler Thromb Vasc Biol 34:2545–2553. https://doi.org/10.1161/ATVBAHA.114.304023

    CAS  Article  PubMed  Google Scholar 

  46. Emini Veseli B, Perrotta P, De Meyer GRA, Roth L, Van der Donckt C, Martinet W, De Meyer GRY (2017) Animal models of atherosclerosis. Eur J Pharmacol. 816:3–13. https://doi.org/10.1016/j.ejphar.2017.05.010

    CAS  Article  PubMed  Google Scholar 

  47. Baldwin AL (2004) Blood substitutes and redox responses in the microcirculation. Antioxid Redox Signal 6:1019–1030. https://doi.org/10.1089/ars.2004.6.1019

    CAS  Article  PubMed  Google Scholar 

  48. Olson JS, Foley EW, Rogge C, Tsai AL, Doyle MP, Lemon DD (2004) No scavenging and the hypertensive effect of hemoglobin-based blood substitutes. Free Radic Biol Med 36:685–697. https://doi.org/10.1016/j.freeradbiomed.2003.11.030

    CAS  Article  PubMed  Google Scholar 

  49. Boehme J, Le Moan N, Kameny RJ, Loucks A, Johengen MJ, Lesneski AL, Gong W, Goudy BD, Davis T, Tanaka K, Davis A, He Y, Long-Boyle J, Ivaturi V, Gobburu JVS, Winger JA, Cary SP, Datar SA, Fineman JR, Krtolica A, Maltepe E (2018) Preservation of myocardial contractility during acute hypoxia with OMX-CV, a novel oxygen delivery biotherapeutic. PLoS Biol 16:e2005924

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Erik Swenson, VA Puget Sound Health Care System, Seattle, WA for providing the environmental chamber used for our in vivo assay. Studies described in this paper were supported by a grant-in-aid from the American Heart Association and the Department of Veterans Affairs Biomedical Laboratory Research and Development Service. The contents do not represent the views of the U.S. Department of Veteran Affairs or the United States Government.

Funding

The study was supported by a Grant-in-Aid from the American Heart Association (17GRNT3341014)1 to Roberto F. Nicosia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto F. Nicosia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement on the welfare of animals

All animal procedures were performed with approval from the Veterans Administration Puget Sound Health Care System Institutional Animal Care and Use Committee and followed National Institutes of Health Guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aplin, A.C., Nicosia, R.F. Tissue oxygenation stabilizes neovessels and mitigates hemorrhages in human atherosclerosis-induced angiogenesis. Angiogenesis (2022). https://doi.org/10.1007/s10456-022-09851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10456-022-09851-8

Keywords

  • Atherosclerosis
  • Neovascularization
  • Hypoxia
  • Hyperoxia
  • Endothelial cell
  • Pericytes
  • Basement membrane
  • Collagen