Skip to main content

A novel somatic mutation in GNAQ in a capillary malformation provides insight into molecular pathogenesis

Abstract

Sturge-Weber syndrome (SWS) is a sporadic, congenital, neuro-cutaneous disorder characterized by a mosaic, capillary malformation. SWS and non-syndromic capillary malformations are both caused by a somatic activating mutation in GNAQ encoding the G protein subunit alpha-q protein. The missense mutation R183Q is the sole GNAQ mutation identified thus far in 90% of SWS-associated or isolated capillary malformations. In this study, we sequenced skin biopsies of capillary malformations from 9 patients. We identified the R183Q mutation in nearly all samples, but one sample exhibited a Q209R mutation. This new mutation occurs at the same residue as the constitutively-activating Q209L mutation, commonly seen in tumors. However, Q209R is a rare variant in this gene. To compare the effect of the Q209R mutation on downstream signaling, we performed reporter assays with a GNAQ-responsive reporter co-transfected with either GNAQ WT, R183Q, Q209L, Q209R, or C9X (representing a null allele). Q209L showed the highest reporter activation, with R183Q and Q209R showing significantly lower activation. To determine whether these mutations had similar or different downstream consequences we performed RNA-seq analysis in microvascular endothelial cells (HMEC-1) electroporated with the same GNAQ variants. The R183 and Q209 missense variants caused extensive dysregulation of a broad range of transcripts compared to the WT or null allele, confirming that these are all activating mutations. However, the missense variants exhibited very few differentially expressed genes (DEGs) when compared to each other. These data suggest that these activating GNAQ mutations differ in magnitude of activation but have similar downstream effects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Desai S, Glasier C (2017) Sturge-weber syndrome. N Engl J Med 377(9):e11. https://doi.org/10.1056/NEJMicm1700538

    Article  PubMed  Google Scholar 

  2. Bachur CD, Comi AM (2013) Sturge-weber syndrome. Curr Treat Options Neurol 15(5):607–617. https://doi.org/10.1007/s11940-013-0253-6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Couto JA, Huang L, Vivero MP, Kamitaki N, Maclellan RA, Mulliken JB, Bischoff J, Warman ML, Greene AK (2016) Endothelial cells from capillary malformations are enriched for somatic GNAQ mutations. Plast Reconstr Surg 137(1):77e–82e. https://doi.org/10.1097/PRS.0000000000001868

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Sabeti S, Ball KL, Burkhart C, Eichenfield L, Fernandez Faith E, Frieden IJ, Geronemus R, Gupta D, Krakowski AC, Levy ML, Metry D, Nelson JS, Tollefson MM, Kelly KM (2021) Consensus statement for the management and treatment of port-wine birthmarks in sturge-weber syndrome. JAMA Dermatol 157(1):98–104. https://doi.org/10.1001/jamadermatol.2020.4226

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huang L, Couto JA, Pinto A, Alexandrescu S, Madsen JR, Greene AK, Sahin M, Bischoff J (2017) Somatic GNAQ mutation is enriched in brain endothelial cells in sturge-weber syndrome. Pediatr Neurol 67:59–63. https://doi.org/10.1016/j.pediatrneurol.2016.10.010

    Article  PubMed  Google Scholar 

  6. Happle R (1987) Lethal genes surviving by mosaicism: a possible explanation for sporadic birth defects involving the skin. J Am Acad Dermatol 16(4):899–906

    CAS  Article  Google Scholar 

  7. Kimple AJ, Bosch DE, Giguere PM, Siderovski DP (2011) Regulators of G-protein signaling and their Galpha substrates: promises and challenges in their use as drug discovery targets. Pharmacol Rev 63(3):728–749. https://doi.org/10.1124/pr.110.003038

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP, Cohen B, North PE, Marchuk DA, Comi AM, Pevsner J (2013) Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 368(21):1971–1979. https://doi.org/10.1056/NEJMoa1213507

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Nakashima M, Miyajima M, Sugano H, Iimura Y, Kato M, Tsurusaki Y, Miyake N, Saitsu H, Arai H, Matsumoto N (2014) The somatic GNAQ mutation c.548G>A (pR183Q) is consistently found in Sturge-Weber syndrome. J Hum Genet 59(12):691–693. https://doi.org/10.1038/jhg.2014.95

    CAS  Article  PubMed  Google Scholar 

  10. Wu Y, Peng C, Huang L, Xu L, Ding X, Liu Y, Zeng C, Sun H, Guo W (2021) Somatic GNAQ R183Q mutation is located within the sclera and episclera in patients with Sturge-Weber syndrome. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2020-317287

    Article  PubMed  Google Scholar 

  11. Sundaram SK, Michelhaugh SK, Klinger NV, Kupsky WJ, Sood S, Chugani HT, Mittal S, Juhasz C (2017) GNAQ mutation in the venous vascular malformation and underlying brain tissue in sturge-weber syndrome. Neuropediatrics 48(5):385–389. https://doi.org/10.1055/s-0037-1603515

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Fjaer R, Marciniak K, Sundnes O, Hjorthaug H, Sheng Y, Hammarstrom C, Sitek JC, Vigeland MD, Backe PH, Oye AM, Fosse JH, Stav-Noraas TE, Uchiyama Y, Matsumoto N, Comi A, Pevsner J, Haraldsen G, Selmer KK (2021) A novel somatic mutation in GNB2 provides new insights to the pathogenesis of Sturge-Weber syndrome. Hum Mol Genet 30(21):1919–1931. https://doi.org/10.1093/hmg/ddab144

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Polubothu S, Al-Olabi L, Carmen Del Boente M, Chacko A, Eleftheriou G, Glover M, Jimenez-Gallo D, Jones EA, Lomas D, Folster-Holst R, Syed S, Tasani M, Thomas A, Tisdall M, Torrelo A, Aylett S, Kinsler VA (2020) GNA11 mutation as a cause of sturge-weber syndrome: expansion of the phenotypic spectrum of Galpha/11 mosaicism and the associated clinical diagnoses. J Invest Dermatol 140(5):1110–1113. https://doi.org/10.1016/j.jid.2019.10.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Takasaki J, Saito T, Taniguchi M, Kawasaki T, Moritani Y, Hayashi K, Kobori M (2004) A novel Galphaq/11-selective inhibitor. J Biol Chem 279(46):47438–47445. https://doi.org/10.1074/jbc.M408846200

    CAS  Article  PubMed  Google Scholar 

  15. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S (2020) The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol 38(3):276–278. https://doi.org/10.1038/s41587-020-0439-x

    CAS  Article  PubMed  Google Scholar 

  16. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Ge SX, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36(8):2628–2629. https://doi.org/10.1093/bioinformatics/btz931

    CAS  Article  PubMed  Google Scholar 

  18. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR, Wooster R (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91(2):355–358. https://doi.org/10.1038/sj.bjc.6601894

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Yamauchi J, Itoh H, Shinoura H, Miyamoto Y, Tsumaya K, Hirasawa A, Kaziro Y, Tsujimoto G (2001) Galphaq-dependent activation of mitogen-activated protein kinase kinase 4/c-Jun N-terminal kinase cascade. Biochem Biophys Res Commun 288(5):1087–1094. https://doi.org/10.1006/bbrc.2001.5891

    CAS  Article  PubMed  Google Scholar 

  20. Thomas AC, Zeng Z, Riviere JB, O’Shaughnessy R, Al-Olabi L, St-Onge J, Atherton DJ, Aubert H, Bagazgoitia L, Barbarot S, Bourrat E, Chiaverini C, Chong WK, Duffourd Y, Glover M, Groesser L, Hadj-Rabia S, Hamm H, Happle R, Mushtaq I, Lacour JP, Waelchli R, Wobser M, Vabres P, Patton EE, Kinsler VA (2016) Mosaic activating mutations in GNA11 and GNAQ are associated with phakomatosis pigmentovascularis and extensive dermal melanocytosis. J Invest Dermatol 136(4):770–778. https://doi.org/10.1016/j.jid.2015.11.027

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Nagae R, Sato K, Yasui Y, Banno Y, Nagase T, Ueda H (2011) Gs and Gq signalings regulate hPEM-2-induced cell responses in Neuro-2a cells. Biochem Biophys Res Commun 415(1):168–173. https://doi.org/10.1016/j.bbrc.2011.10.047

    CAS  Article  PubMed  Google Scholar 

  22. Maziarz M, Leyme A, Marivin A, Luebbers A, Patel PP, Chen Z, Sprang SR, Garcia-Marcos M (2018) Atypical activation of the G protein Gα(q) by the oncogenic mutation Q209P. J Biol Chem 293(51):19586–19599. https://doi.org/10.1074/jbc.RA118.005291

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Matsuo A, Matsumoto S, Nagano M, Masumoto KH, Takasaki J, Matsumoto M, Kobori M, Katoh M, Shigeyoshi Y (2005) Molecular cloning and characterization of a novel Gq-coupled orphan receptor GPRg1 exclusively expressed in the central nervous system. Biochem Biophys Res Commun 331(1):363–369. https://doi.org/10.1016/j.bbrc.2005.03.174

    CAS  Article  PubMed  Google Scholar 

  24. Huang L, Bichsel C, Norris AL, Thorpe J, Pevsner J, Alexandrescu S, Pinto A, Zurakowski D, Kleiman RJ, Sahin M, Greene AK, Bischoff J (2022) Endothelial GNAQ pR183Q increases ANGPT2 (Angiopoietin-2) and drives formation of enlarged blood vessels. Arterioscler Thromb Vasc Biol 42(1):e27–e43. https://doi.org/10.1161/ATVBAHA.121.316651

    CAS  Article  PubMed  Google Scholar 

  25. Bichsel CA, Goss J, Alomari M, Alexandrescu S, Robb R, Smith LE, Hochman M, Greene AK, Bischoff J (2019) Association of somatic GNAQ mutation with capillary malformations in a case of choroidal hemangioma. JAMA Ophthalmol 137(1):91–95. https://doi.org/10.1001/jamaophthalmol.2018.5141

    Article  PubMed  Google Scholar 

  26. Martins L, Giovani PA, Rebouças PD, Brasil DM, Haiter Neto F, Coletta RD, Machado RA, Puppin-Rontani RM, Nociti FH Jr, Kantovitz KR (2017) Computational analysis for GNAQ mutations: New insights on the molecular etiology of Sturge-Weber syndrome. J Mol Graph Model 76:429–440. https://doi.org/10.1016/j.jmgm.2017.07.011

    CAS  Article  PubMed  Google Scholar 

  27. Litosch I (2016) Decoding Galphaq signaling. Life Sci 152:99–106. https://doi.org/10.1016/j.lfs.2016.03.037

    CAS  Article  PubMed  Google Scholar 

  28. Klebanov N, Lin WM, Artomov M, Shaughnessy M, Njauw CN, Bloom R, Eterovic AK, Chen K, Kim TB, Tsao SS, Tsao H (2019) Use of targeted next-generation sequencing to identify activating hot spot mutations in cherry angiomas. JAMA Dermatol 155(2):211–215. https://doi.org/10.1001/jamadermatol.2018.4231

    Article  PubMed  PubMed Central  Google Scholar 

  29. Snellings DA, Gallione CJ, Clark DS, Vozoris NT, Faughnan ME, Marchuk DA (2019) Somatic mutations in vascular malformations of hereditary hemorrhagic telangiectasia result in Bi-allelic loss of ENG or ACVRL1. Am J Hum Genet 105(5):894–906. https://doi.org/10.1016/j.ajhg.2019.09.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Bean GR, Joseph NM, Gill RM, Folpe AL, Horvai AE, Umetsu SE (2017) Recurrent GNAQ mutations in anastomosing hemangiomas. Mod Pathol 30(5):722–727. https://doi.org/10.1038/modpathol.2016.234

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by The Brain Vascular Malformation Consortium (U54NS065705) of the NCATS Rare Diseases Clinical Research Network (RDCRN). RDCRN is an initiative of the Office of Rare Diseases Research (ORDR) and NCATS, funded through a collaboration between NCATS and NINDS. We also thank the Sturge-Weber Foundation for encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Marchuk.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Websites

ClinVar: https://www.ncbi.nlm.nih.gov/clinvar/.

COSMIC: https://cancer.sanger.ac.uk/cosmic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 728 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galeffi, F., Snellings, D.A., Wetzel-Strong, S.E. et al. A novel somatic mutation in GNAQ in a capillary malformation provides insight into molecular pathogenesis. Angiogenesis (2022). https://doi.org/10.1007/s10456-022-09841-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10456-022-09841-w

Keywords

  • GalphaQ
  • RNA sequencing
  • Signaling