Skip to main content

Targeting SMYD2 inhibits angiogenesis and increases the efficiency of apatinib by suppressing EGFL7 in colorectal cancer

Abstract

Angiogenesis is an essential factor affecting the occurrence and development of solid tumors. SET And MYND Domain Containing 2 (SMYD2) serves as an oncogene in various cancers. However, whether SMYD2 is involved in tumor angiogenesis remains unclear. Here, we report that SMYD2 expression is associated with microvessel density in colorectal cancer (CRC) tissues. SMYD2 promotes CRC angiogenesis in vitro and in vivo. Mechanistically, SMYD2 physically interacts with HNRNPK and mediates lysine monomethylation at K422 of HNRNPK, which substantially increases RNA binding activity. HNRNPK acts by binding and stabilizing EGFL7 mRNA. As an angiogenic stimulant, EGFL7 enhances CRC angiogenesis. H3K4me3 maintained by PHF8 mediates the abnormal overexpression of SMYD2 in CRC. Moreover, targeting SMYD2 blocks CRC angiogenesis in tumor xenografts. Treatment with BAY-598, a functional inhibitor of SMYD2, can also synergize with apatinib in patient-derived xenografts. Overall, our findings reveal a new regulatory axis of CRC angiogenesis and provide a potential strategy for antiangiogenic therapy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CAM:

Chicken embryo chorioallantoic membrane

PDX:

Patient-derived xenograft

CRC:

Colorectal cancer

RBP:

RNA-binding protein

EC:

Endothelial cell

TCM:

Tumor-conditioned medium

MVD:

Microvessel density

TF:

Transcription factor

N1-ICD:

Notch1 intracellular domain

References

  1. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A (2020) Colorectal cancer statistics, 2020. CA Cancer J Clin 70(3):145–164. https://doi.org/10.3322/caac.21601

    Article  PubMed  Google Scholar 

  2. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    CAS  Article  Google Scholar 

  3. Cohen MH, Gootenberg J, Keegan P, Pazdur R (2007) FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist 12(6):713–718. https://doi.org/10.1634/theoncologist.12-6-713

    CAS  Article  PubMed  Google Scholar 

  4. Roviello G, Ravelli A, Polom K, Petrioli R, Marano L, Marrelli D, Roviello F, Generali D (2016) Apatinib: a novel receptor tyrosine kinase inhibitor for the treatment of gastric cancer. Cancer Lett 372(2):187–191. https://doi.org/10.1016/j.canlet.2016.01.014

    CAS  Article  PubMed  Google Scholar 

  5. Burgermeister E, Battaglin F, Eladly F, Wu W, Herweck F, Schulte N, Betge J, Hartel N, Kather JN, Weis CA, Gaiser T, Marx A, Weiss C, Hofheinz R, Miller IS, Loupakis F, Lenz HJ, Byrne AT, Ebert MP (2019) Aryl hydrocarbon receptor nuclear translocator-like (ARNTL/BMAL1) is associated with bevacizumab resistance in colorectal cancer via regulation of vascular endothelial growth factor A. EBioMedicine 45:139–154. https://doi.org/10.1016/j.ebiom.2019.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  6. Goel A, Boland CR (2012) Epigenetics of colorectal cancer. Gastroenterology 143(6):1442–1460. https://doi.org/10.1053/j.gastro.2012.09.032

    CAS  Article  PubMed  Google Scholar 

  7. Brown MA, Sims RJ 3rd, Gottlieb PD, Tucker PW (2006) Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 5:26. https://doi.org/10.1186/1476-4598-5-26

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Skerjanc IS, Figeys D (2008) The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics 7(3):560–572. https://doi.org/10.1074/mcp.M700271-MCP200

    CAS  Article  PubMed  Google Scholar 

  9. Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL (2006) Repression of p53 activity by Smyd2-mediated methylation. Nature 444(7119):629–632. https://doi.org/10.1038/nature05287

    CAS  Article  PubMed  Google Scholar 

  10. Cho HS, Hayami S, Toyokawa G, Maejima K, Yamane Y, Suzuki T, Dohmae N, Kogure M, Kang D, Neal DE, Ponder BA, Yamaue H, Nakamura Y, Hamamoto R (2012) RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia 14(6):476–486. https://doi.org/10.1593/neo.12656

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Zeng Y, Qiu R, Yang Y, Gao T, Zheng Y, Huang W, Gao J, Zhang K, Liu R, Wang S, Hou Y, Yu W, Leng S, Feng D, Liu W, Zhang X, Wang Y (2019) Regulation of EZH2 by SMYD2-mediated lysine methylation is implicated in tumorigenesis. Cell Rep 29(6):1482–1498. https://doi.org/10.1016/j.celrep.2019.10.004

    CAS  Article  PubMed  Google Scholar 

  12. Hamamoto R, Toyokawa G, Nakakido M, Ueda K, Nakamura Y (2014) SMYD2-dependent HSP90 methylation promotes cancer cell proliferation by regulating the chaperone complex formation. Cancer Lett 351(1):126–133. https://doi.org/10.1016/j.canlet.2014.05.014

    CAS  Article  PubMed  Google Scholar 

  13. Obermann WMJ (2018) A motif in HSP90 and P23 that links molecular chaperones to efficient estrogen receptor alpha methylation by the lysine methyltransferase SMYD2. J Biol Chem 293(42):16479–16487. https://doi.org/10.1074/jbc.RA118.003578

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Nakakido M, Deng Z, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R (2015) Dysregulation of AKT pathway by SMYD2-mediated lysine methylation on PTEN. Neoplasia 17(4):367–373. https://doi.org/10.1016/j.neo.2015.03.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Piao L, Kang D, Suzuki T, Masuda A, Dohmae N, Nakamura Y, Hamamoto R (2014) The histone methyltransferase SMYD2 methylates PARP1 and promotes polyADP-ribosylation activity in cancer cells. Neoplasia 16(3):257–264. https://doi.org/10.1016/j.neo.2014.03.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Egorova KS, Olenkina OM, Olenina LV (2010) Lysine methylation of nonhistone proteins is a way to regulate their stability and function. Biochemistry (Mosc) 75(5):535–548. https://doi.org/10.1134/s0006297910050019

    CAS  Article  Google Scholar 

  17. Yan L, Ding B, Liu H, Zhang Y, Zeng J, Hu J, Yao W, Yu G, An R, Chen Z, Ye Z, Xing J, Xiao K, Wu L, Xu H (2019) Inhibition of SMYD2 suppresses tumor progression by down-regulating microRNA-125b and attenuates multi-drug resistance in renal cell carcinoma. Theranostics 9(26):8377–8391. https://doi.org/10.7150/thno.37628

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Meng F, Liu X, Lin C, Xu L, Liu J, Zhang P, Zhang X, Song J, Yan Y, Ren Z, Zhang Y (2020) SMYD2 suppresses APC2 expression to activate the Wnt/β-catenin pathway and promotes epithelial-mesenchymal transition in colorectal cancer. Am J Cancer Res 10(3):997–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Creamer D, Allen MH, Sousa A, Poston R, Barker JN (1997) Localization of endothelial proliferation and microvascular expansion in active plaque psoriasis. Br J Dermatol 136(6):859–865

    CAS  Article  Google Scholar 

  20. Fan C, Yang LY, Wu F, Tao YM, Liu LS, Zhang JF, He YN, Tang LL, Chen GD, Guo L (2013) The expression of Egfl7 in human normal tissues and epithelial tumors. Int J Biol Markers 28(1):71–83. https://doi.org/10.5301/jbm.2013.10568

    CAS  Article  PubMed  Google Scholar 

  21. Nichol D, Shawber C, Fitch MJ, Bambino K, Sharma A, Kitajewski J, Stuhlmann H (2010) Impaired angiogenesis and altered Notch signaling in mice overexpressing endothelial Egfl7. Blood 116(26):6133–6143. https://doi.org/10.1182/blood-2010-03-274860

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, Xu H (2019) Post-translational modification control of RNA-binding protein hnRNPK function. Open Biol 9(3):180239. https://doi.org/10.1098/rsob.180239

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Lv Y, Shi Y, Han Q, Dai G (2017) Histone demethylase PHF8 accelerates the progression of colorectal cancer and can be regulated by miR-488 in vitro. Mol Med Rep 16(4):4437–4444. https://doi.org/10.3892/mmr.2017.7130

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Liu Q, Pang J, Wang LA, Huang Z, Xu J, Yang X, Xie Q, Huang Y, Tang T, Tong D, Liu G, Wang L, Zhang D, Ma Q, Xiao H, Lan W, Qin J, Jiang J (2021) Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2. J Pathol 253(1):106–118. https://doi.org/10.1002/path.5557

    CAS  Article  PubMed  Google Scholar 

  25. Feng W, Yonezawa M, Ye J, Jenuwein T, Grummt I (2010) PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation. Nat Struct Mol Biol 17(4):445–450. https://doi.org/10.1038/nsmb.1778

    CAS  Article  PubMed  Google Scholar 

  26. Zhang H (2015) Apatinib for molecular targeted therapy in tumor. Drug Des Devel Ther 9:6075–6081. https://doi.org/10.2147/DDDT.S97235

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Huang G, Chen L (2008) Tumor vasculature and microenvironment normalization: a possible mechanism of antiangiogenesis therapy. Cancer Biother Radiopharm 23(5):661–667. https://doi.org/10.1089/cbr.2008.0492

    CAS  Article  PubMed  Google Scholar 

  28. Viallard C, Larrivee B (2017) Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20(4):409–426. https://doi.org/10.1007/s10456-017-9562-9

    CAS  Article  PubMed  Google Scholar 

  29. Hong G, Kuek V, Shi J, Zhou L, Han X, He W, Tickner J, Qiu H, Wei Q, Xu J (2018) EGFL7: master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone homeostasis. J Cell Physiol 233(11):8526–8537. https://doi.org/10.1002/jcp.26792

    CAS  Article  PubMed  Google Scholar 

  30. Usuba R, Pauty J, Soncin F, Matsunaga YT (2019) EGFL7 regulates sprouting angiogenesis and endothelial integrity in a human blood vessel model. Biomaterials 197:305–316. https://doi.org/10.1016/j.biomaterials.2019.01.022

    CAS  Article  PubMed  Google Scholar 

  31. Fitch MJ, Campagnolo L, Kuhnert F, Stuhlmann H (2004) Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn 230(2):316–324. https://doi.org/10.1002/dvdy.20063

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Nichol D, Stuhlmann H (2012) EGFL7: a unique angiogenic signaling factor in vascular development and disease. Blood 119(6):1345–1352. https://doi.org/10.1182/blood-2011-10-322446

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Richter A, Alexdottir MS, Magnus SH, Richter TR, Morikawa M, Zwijsen A, Valdimarsdottir G (2019) EGFL7 mediates BMP9-induced sprouting angiogenesis of endothelial cells derived from human embryonic stem cells. Stem cell reports 12(6):1250–1259. https://doi.org/10.1016/j.stemcr.2019.04.022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Ostareck-Lederer A, Ostareck DH, Cans C, Neubauer G, Bomsztyk K, Superti-Furga G, Hentze MW (2002) c-Src-mediated phosphorylation of hnRNP K drives translational activation of specifically silenced mRNAs. Mol Cell Biol 22(13):4535–4543. https://doi.org/10.1128/mcb.22.13.4535-4543.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Gal J, Chen J, Na DY, Tichacek L, Barnett KR, Zhu H (2019) The acetylation of lysine-376 of G3BP1 regulates RNA binding and stress GRANULE Dynamics. Mol Cell Biol. https://doi.org/10.1128/mcb.00052-19

    Article  PubMed  PubMed Central  Google Scholar 

  36. Arenas A, Chen J, Kuang L, Barnett KR, Kasarskis EJ, Gal J, Zhu H (2020) Lysine acetylation regulates the RNA binding, subcellular localization and inclusion formation of FUS. Hum Mol Genet 29(16):2684–2697. https://doi.org/10.1093/hmg/ddaa159

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Wei HM, Hu HH, Chang GY, Lee YJ, Li YC, Chang HH, Li C (2014) Arginine methylation of the cellular nucleic acid binding protein does not affect its subcellular localization but impedes RNA binding. FEBS Lett 588(9):1542–1548. https://doi.org/10.1016/j.febslet.2014.03.052

    CAS  Article  PubMed  Google Scholar 

  38. Wu Z, Connolly J, Biggar KK (2017) Beyond histones - the expanding roles of protein lysine methylation. FEBS J 284(17):2732–2744. https://doi.org/10.1111/febs.14056

    CAS  Article  PubMed  Google Scholar 

  39. Zhang X, Tanaka K, Yan J, Li J, Peng D, Jiang Y, Yang Z, Barton MC, Wen H, Shi X (2013) Regulation of estrogen receptor alpha by histone methyltransferase SMYD2-mediated protein methylation. Proc Natl Acad Sci USA 110(43):17284–17289. https://doi.org/10.1073/pnas.1307959110

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bagislar S, Sabò A, Kress TR, Doni M, Nicoli P, Campaner S, Amati B (2016) Smyd2 is a Myc-regulated gene critical for MLL-AF9 induced leukemogenesis. Oncotarget 7(41):66398–66415. https://doi.org/10.18632/oncotarget.12012

    Article  PubMed  PubMed Central  Google Scholar 

  41. Scott AJ, Messersmith WA, Jimeno A (2015) Apatinib: a promising oral antiangiogenic agent in the treatment of multiple solid tumors. Drugs Today (Barc) 51(4):223–229. https://doi.org/10.1358/dot.2015.51.4.2320599

    CAS  Article  Google Scholar 

  42. Li A, Wang K, Xu A, Wang G, Miao Y, Sun Z, Zhang J (2019) Apatinib as an optional treatment in metastatic colorectal cancer. Medicine (Baltimore) 98(35):e16919. https://doi.org/10.1097/MD.0000000000016919

    CAS  Article  Google Scholar 

  43. Cheng X, Feng H, Wu H, Jin Z, Shen X, Kuang J, Huo Z, Chen X, Gao H, Ye F, Ji X, Jing X, Zhang Y, Zhang T, Qiu W, Zhao R (2018) Targeting autophagy enhances apatinib-induced apoptosis via endoplasmic reticulum stress for human colorectal cancer. Cancer Lett 431:105–114. https://doi.org/10.1016/j.canlet.2018.05.046

    CAS  Article  PubMed  Google Scholar 

  44. Tian X, Li S, Ge G (2021) Apatinib promotes ferroptosis in colorectal cancer cells by targeting ELOVL6/ACSL4 signaling. Cancer Manag Res 13:1333–1342. https://doi.org/10.2147/CMAR.S274631

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Yang QK, Chen T, Wang SQ, Zhang XJ, Yao ZX (2020) Apatinib as targeted therapy for advanced bone and soft tissue sarcoma: a dilemma of reversing multidrug resistance while suffering drug resistance itself. Angiogenesis 23(3):279–298. https://doi.org/10.1007/s10456-020-09716-y

    CAS  Article  PubMed  Google Scholar 

  46. Dong ZR, Sun D, Yang YF, Zhou W, Wu R, Wang XW, Shi K, Yan YC, Yan LJ, Yao CY, Chen ZQ, Zhi XT, Li T (2020) TMPRSS4 drives angiogenesis in hepatocellular carcinoma by promoting HB-EGF expression and proteolytic cleavage. Hepatology 72(3):923–939. https://doi.org/10.1002/hep.31076

    CAS  Article  PubMed  Google Scholar 

  47. Ye G, Zhang J, Zhang C (2021) Stimulator of interferon response cGAMP interactor overcomes ERBB2-mediated apatinib resistance in head and neck squamous cell carcinoma. Aging 13(16):20793–20807. https://doi.org/10.18632/aging.203475

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Shi J, Li Y, Jia R, Fan X (2020) The fidelity of cancer cells in PDX models: characteristics, mechanism and clinical significance. Int J Cancer 146(8):2078–2088. https://doi.org/10.1002/ijc.32662

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research was supported in part by the National Natural Science Foundation of China (82073133, and 82072729), the Scientific research project of Jiangsu Health Committee (ZDA2020005), the Natural Science Foundation of Jiangsu Province (BK20211606 and BK20191154), and the Xuzhou Medical Leading Talents Training Project (XWRCHT20210034).

Author information

Authors and Affiliations

Authors

Contributions

JS and YZ: conceived the study and participated in the study design. YZ, LZ, and HS: performed cell culture, tubule formation, HUVEC migration, qPCR, Western blot, IP, RIP, luciferase assay, and ChIP assay. YZ and HS: performed bioinformatics analysis, IHC staining, and pathological diagnosis. LZ, YXX: carried out CAM experiments. LZ, YXX, and JYZ: constructed animal models. CL, JQW, and XXS: contributed to clinical sample collection, follow-up clinical data analysis. Primer design and plasmid construction were carried out by YZ, TJ, and HS. YZ, LZ, and HS analyzed the data, sorted the charts, and wrote the manuscript. The final draft was read and approved by all authors.

Corresponding authors

Correspondence to Hu Song or Jun Song.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhou, L., Xu, Y. et al. Targeting SMYD2 inhibits angiogenesis and increases the efficiency of apatinib by suppressing EGFL7 in colorectal cancer. Angiogenesis (2022). https://doi.org/10.1007/s10456-022-09839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10456-022-09839-4

Keywords

  • Colorectal cancer
  • Angiogenesis
  • SMYD2
  • Methylation
  • Apatinib