Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A (2020) Colorectal cancer statistics, 2020. CA Cancer J Clin 70(3):145–164. https://doi.org/10.3322/caac.21601
Article
PubMed
Google Scholar
Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186
CAS
Article
Google Scholar
Cohen MH, Gootenberg J, Keegan P, Pazdur R (2007) FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist 12(6):713–718. https://doi.org/10.1634/theoncologist.12-6-713
CAS
Article
PubMed
Google Scholar
Roviello G, Ravelli A, Polom K, Petrioli R, Marano L, Marrelli D, Roviello F, Generali D (2016) Apatinib: a novel receptor tyrosine kinase inhibitor for the treatment of gastric cancer. Cancer Lett 372(2):187–191. https://doi.org/10.1016/j.canlet.2016.01.014
CAS
Article
PubMed
Google Scholar
Burgermeister E, Battaglin F, Eladly F, Wu W, Herweck F, Schulte N, Betge J, Hartel N, Kather JN, Weis CA, Gaiser T, Marx A, Weiss C, Hofheinz R, Miller IS, Loupakis F, Lenz HJ, Byrne AT, Ebert MP (2019) Aryl hydrocarbon receptor nuclear translocator-like (ARNTL/BMAL1) is associated with bevacizumab resistance in colorectal cancer via regulation of vascular endothelial growth factor A. EBioMedicine 45:139–154. https://doi.org/10.1016/j.ebiom.2019.07.004
Article
PubMed
PubMed Central
Google Scholar
Goel A, Boland CR (2012) Epigenetics of colorectal cancer. Gastroenterology 143(6):1442–1460. https://doi.org/10.1053/j.gastro.2012.09.032
CAS
Article
PubMed
Google Scholar
Brown MA, Sims RJ 3rd, Gottlieb PD, Tucker PW (2006) Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 5:26. https://doi.org/10.1186/1476-4598-5-26
CAS
Article
PubMed
PubMed Central
Google Scholar
Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Skerjanc IS, Figeys D (2008) The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics 7(3):560–572. https://doi.org/10.1074/mcp.M700271-MCP200
CAS
Article
PubMed
Google Scholar
Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL (2006) Repression of p53 activity by Smyd2-mediated methylation. Nature 444(7119):629–632. https://doi.org/10.1038/nature05287
CAS
Article
PubMed
Google Scholar
Cho HS, Hayami S, Toyokawa G, Maejima K, Yamane Y, Suzuki T, Dohmae N, Kogure M, Kang D, Neal DE, Ponder BA, Yamaue H, Nakamura Y, Hamamoto R (2012) RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia 14(6):476–486. https://doi.org/10.1593/neo.12656
CAS
Article
PubMed
PubMed Central
Google Scholar
Zeng Y, Qiu R, Yang Y, Gao T, Zheng Y, Huang W, Gao J, Zhang K, Liu R, Wang S, Hou Y, Yu W, Leng S, Feng D, Liu W, Zhang X, Wang Y (2019) Regulation of EZH2 by SMYD2-mediated lysine methylation is implicated in tumorigenesis. Cell Rep 29(6):1482–1498. https://doi.org/10.1016/j.celrep.2019.10.004
CAS
Article
PubMed
Google Scholar
Hamamoto R, Toyokawa G, Nakakido M, Ueda K, Nakamura Y (2014) SMYD2-dependent HSP90 methylation promotes cancer cell proliferation by regulating the chaperone complex formation. Cancer Lett 351(1):126–133. https://doi.org/10.1016/j.canlet.2014.05.014
CAS
Article
PubMed
Google Scholar
Obermann WMJ (2018) A motif in HSP90 and P23 that links molecular chaperones to efficient estrogen receptor alpha methylation by the lysine methyltransferase SMYD2. J Biol Chem 293(42):16479–16487. https://doi.org/10.1074/jbc.RA118.003578
CAS
Article
PubMed
PubMed Central
Google Scholar
Nakakido M, Deng Z, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R (2015) Dysregulation of AKT pathway by SMYD2-mediated lysine methylation on PTEN. Neoplasia 17(4):367–373. https://doi.org/10.1016/j.neo.2015.03.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Piao L, Kang D, Suzuki T, Masuda A, Dohmae N, Nakamura Y, Hamamoto R (2014) The histone methyltransferase SMYD2 methylates PARP1 and promotes polyADP-ribosylation activity in cancer cells. Neoplasia 16(3):257–264. https://doi.org/10.1016/j.neo.2014.03.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Egorova KS, Olenkina OM, Olenina LV (2010) Lysine methylation of nonhistone proteins is a way to regulate their stability and function. Biochemistry (Mosc) 75(5):535–548. https://doi.org/10.1134/s0006297910050019
CAS
Article
Google Scholar
Yan L, Ding B, Liu H, Zhang Y, Zeng J, Hu J, Yao W, Yu G, An R, Chen Z, Ye Z, Xing J, Xiao K, Wu L, Xu H (2019) Inhibition of SMYD2 suppresses tumor progression by down-regulating microRNA-125b and attenuates multi-drug resistance in renal cell carcinoma. Theranostics 9(26):8377–8391. https://doi.org/10.7150/thno.37628
CAS
Article
PubMed
PubMed Central
Google Scholar
Meng F, Liu X, Lin C, Xu L, Liu J, Zhang P, Zhang X, Song J, Yan Y, Ren Z, Zhang Y (2020) SMYD2 suppresses APC2 expression to activate the Wnt/β-catenin pathway and promotes epithelial-mesenchymal transition in colorectal cancer. Am J Cancer Res 10(3):997–1011
CAS
PubMed
PubMed Central
Google Scholar
Creamer D, Allen MH, Sousa A, Poston R, Barker JN (1997) Localization of endothelial proliferation and microvascular expansion in active plaque psoriasis. Br J Dermatol 136(6):859–865
CAS
Article
Google Scholar
Fan C, Yang LY, Wu F, Tao YM, Liu LS, Zhang JF, He YN, Tang LL, Chen GD, Guo L (2013) The expression of Egfl7 in human normal tissues and epithelial tumors. Int J Biol Markers 28(1):71–83. https://doi.org/10.5301/jbm.2013.10568
CAS
Article
PubMed
Google Scholar
Nichol D, Shawber C, Fitch MJ, Bambino K, Sharma A, Kitajewski J, Stuhlmann H (2010) Impaired angiogenesis and altered Notch signaling in mice overexpressing endothelial Egfl7. Blood 116(26):6133–6143. https://doi.org/10.1182/blood-2010-03-274860
CAS
Article
PubMed
PubMed Central
Google Scholar
Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, Xu H (2019) Post-translational modification control of RNA-binding protein hnRNPK function. Open Biol 9(3):180239. https://doi.org/10.1098/rsob.180239
CAS
Article
PubMed
PubMed Central
Google Scholar
Lv Y, Shi Y, Han Q, Dai G (2017) Histone demethylase PHF8 accelerates the progression of colorectal cancer and can be regulated by miR-488 in vitro. Mol Med Rep 16(4):4437–4444. https://doi.org/10.3892/mmr.2017.7130
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu Q, Pang J, Wang LA, Huang Z, Xu J, Yang X, Xie Q, Huang Y, Tang T, Tong D, Liu G, Wang L, Zhang D, Ma Q, Xiao H, Lan W, Qin J, Jiang J (2021) Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2. J Pathol 253(1):106–118. https://doi.org/10.1002/path.5557
CAS
Article
PubMed
Google Scholar
Feng W, Yonezawa M, Ye J, Jenuwein T, Grummt I (2010) PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation. Nat Struct Mol Biol 17(4):445–450. https://doi.org/10.1038/nsmb.1778
CAS
Article
PubMed
Google Scholar
Zhang H (2015) Apatinib for molecular targeted therapy in tumor. Drug Des Devel Ther 9:6075–6081. https://doi.org/10.2147/DDDT.S97235
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang G, Chen L (2008) Tumor vasculature and microenvironment normalization: a possible mechanism of antiangiogenesis therapy. Cancer Biother Radiopharm 23(5):661–667. https://doi.org/10.1089/cbr.2008.0492
CAS
Article
PubMed
Google Scholar
Viallard C, Larrivee B (2017) Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20(4):409–426. https://doi.org/10.1007/s10456-017-9562-9
CAS
Article
PubMed
Google Scholar
Hong G, Kuek V, Shi J, Zhou L, Han X, He W, Tickner J, Qiu H, Wei Q, Xu J (2018) EGFL7: master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone homeostasis. J Cell Physiol 233(11):8526–8537. https://doi.org/10.1002/jcp.26792
CAS
Article
PubMed
Google Scholar
Usuba R, Pauty J, Soncin F, Matsunaga YT (2019) EGFL7 regulates sprouting angiogenesis and endothelial integrity in a human blood vessel model. Biomaterials 197:305–316. https://doi.org/10.1016/j.biomaterials.2019.01.022
CAS
Article
PubMed
Google Scholar
Fitch MJ, Campagnolo L, Kuhnert F, Stuhlmann H (2004) Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn 230(2):316–324. https://doi.org/10.1002/dvdy.20063
CAS
Article
PubMed
PubMed Central
Google Scholar
Nichol D, Stuhlmann H (2012) EGFL7: a unique angiogenic signaling factor in vascular development and disease. Blood 119(6):1345–1352. https://doi.org/10.1182/blood-2011-10-322446
CAS
Article
PubMed
PubMed Central
Google Scholar
Richter A, Alexdottir MS, Magnus SH, Richter TR, Morikawa M, Zwijsen A, Valdimarsdottir G (2019) EGFL7 mediates BMP9-induced sprouting angiogenesis of endothelial cells derived from human embryonic stem cells. Stem cell reports 12(6):1250–1259. https://doi.org/10.1016/j.stemcr.2019.04.022
CAS
Article
PubMed
PubMed Central
Google Scholar
Ostareck-Lederer A, Ostareck DH, Cans C, Neubauer G, Bomsztyk K, Superti-Furga G, Hentze MW (2002) c-Src-mediated phosphorylation of hnRNP K drives translational activation of specifically silenced mRNAs. Mol Cell Biol 22(13):4535–4543. https://doi.org/10.1128/mcb.22.13.4535-4543.2002
CAS
Article
PubMed
PubMed Central
Google Scholar
Gal J, Chen J, Na DY, Tichacek L, Barnett KR, Zhu H (2019) The acetylation of lysine-376 of G3BP1 regulates RNA binding and stress GRANULE Dynamics. Mol Cell Biol. https://doi.org/10.1128/mcb.00052-19
Article
PubMed
PubMed Central
Google Scholar
Arenas A, Chen J, Kuang L, Barnett KR, Kasarskis EJ, Gal J, Zhu H (2020) Lysine acetylation regulates the RNA binding, subcellular localization and inclusion formation of FUS. Hum Mol Genet 29(16):2684–2697. https://doi.org/10.1093/hmg/ddaa159
CAS
Article
PubMed
PubMed Central
Google Scholar
Wei HM, Hu HH, Chang GY, Lee YJ, Li YC, Chang HH, Li C (2014) Arginine methylation of the cellular nucleic acid binding protein does not affect its subcellular localization but impedes RNA binding. FEBS Lett 588(9):1542–1548. https://doi.org/10.1016/j.febslet.2014.03.052
CAS
Article
PubMed
Google Scholar
Wu Z, Connolly J, Biggar KK (2017) Beyond histones - the expanding roles of protein lysine methylation. FEBS J 284(17):2732–2744. https://doi.org/10.1111/febs.14056
CAS
Article
PubMed
Google Scholar
Zhang X, Tanaka K, Yan J, Li J, Peng D, Jiang Y, Yang Z, Barton MC, Wen H, Shi X (2013) Regulation of estrogen receptor alpha by histone methyltransferase SMYD2-mediated protein methylation. Proc Natl Acad Sci USA 110(43):17284–17289. https://doi.org/10.1073/pnas.1307959110
Article
PubMed
PubMed Central
Google Scholar
Bagislar S, Sabò A, Kress TR, Doni M, Nicoli P, Campaner S, Amati B (2016) Smyd2 is a Myc-regulated gene critical for MLL-AF9 induced leukemogenesis. Oncotarget 7(41):66398–66415. https://doi.org/10.18632/oncotarget.12012
Article
PubMed
PubMed Central
Google Scholar
Scott AJ, Messersmith WA, Jimeno A (2015) Apatinib: a promising oral antiangiogenic agent in the treatment of multiple solid tumors. Drugs Today (Barc) 51(4):223–229. https://doi.org/10.1358/dot.2015.51.4.2320599
CAS
Article
Google Scholar
Li A, Wang K, Xu A, Wang G, Miao Y, Sun Z, Zhang J (2019) Apatinib as an optional treatment in metastatic colorectal cancer. Medicine (Baltimore) 98(35):e16919. https://doi.org/10.1097/MD.0000000000016919
CAS
Article
Google Scholar
Cheng X, Feng H, Wu H, Jin Z, Shen X, Kuang J, Huo Z, Chen X, Gao H, Ye F, Ji X, Jing X, Zhang Y, Zhang T, Qiu W, Zhao R (2018) Targeting autophagy enhances apatinib-induced apoptosis via endoplasmic reticulum stress for human colorectal cancer. Cancer Lett 431:105–114. https://doi.org/10.1016/j.canlet.2018.05.046
CAS
Article
PubMed
Google Scholar
Tian X, Li S, Ge G (2021) Apatinib promotes ferroptosis in colorectal cancer cells by targeting ELOVL6/ACSL4 signaling. Cancer Manag Res 13:1333–1342. https://doi.org/10.2147/CMAR.S274631
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang QK, Chen T, Wang SQ, Zhang XJ, Yao ZX (2020) Apatinib as targeted therapy for advanced bone and soft tissue sarcoma: a dilemma of reversing multidrug resistance while suffering drug resistance itself. Angiogenesis 23(3):279–298. https://doi.org/10.1007/s10456-020-09716-y
CAS
Article
PubMed
Google Scholar
Dong ZR, Sun D, Yang YF, Zhou W, Wu R, Wang XW, Shi K, Yan YC, Yan LJ, Yao CY, Chen ZQ, Zhi XT, Li T (2020) TMPRSS4 drives angiogenesis in hepatocellular carcinoma by promoting HB-EGF expression and proteolytic cleavage. Hepatology 72(3):923–939. https://doi.org/10.1002/hep.31076
CAS
Article
PubMed
Google Scholar
Ye G, Zhang J, Zhang C (2021) Stimulator of interferon response cGAMP interactor overcomes ERBB2-mediated apatinib resistance in head and neck squamous cell carcinoma. Aging 13(16):20793–20807. https://doi.org/10.18632/aging.203475
CAS
Article
PubMed
PubMed Central
Google Scholar
Shi J, Li Y, Jia R, Fan X (2020) The fidelity of cancer cells in PDX models: characteristics, mechanism and clinical significance. Int J Cancer 146(8):2078–2088. https://doi.org/10.1002/ijc.32662
CAS
Article
PubMed
Google Scholar