Skip to main content

Copper stress impairs angiogenesis and lymphangiogenesis during zebrafish embryogenesis by down-regulating pERK1/2-foxm1-MMP2/9 axis and epigenetically regulating ccbe1 expression

Abstract

Molecular transport and cell circulation between tissues and organs through blood and lymphatic vessels are essential for physiological homeostasis in vertebrates. Despite the report of its association with vessel formation in solid tumors, the biological effects of Copper (Cu) accumulation on angiogenesis and lymphangiogenesis during embryogenesis are still unknown. In this study, we unveiled that intersegmental blood circulation was partially blocked in Cu2+-stressed zebrafish embryos and cell migration and tube formation were impaired in Cu2+-stressed mammalian HUVECs. Specifically, Cu2+-stressed embryos showed down-regulation in the expression of amotl2 and its downstream pERK1/2-foxm1-MMP2/9 regulatory axis, and knockdown/knockout of foxm1 in zebrafish embryos phenocopied angiogenesis defects, while FOXM1 knockdown HUVECs phenocopied cell migration and tube formation defects, indicating that excessive Cu2+-induced angiogenesis defects and blocked cell migration via down-regulating amotl2-pERK1/2-foxm1-MMP2/9 regulatory axis in both embryos and mammalian cells. Additionally, thoracic duct was revealed to be partially absent in Cu2+-stressed zebrafish embryos. Specifically, Cu2+-stressed embryos showed down-regulation in the expression of ccbe1 (a gene with pivotal function in lymphangiogenesis) due to the hypermethylation of the E2F7/8 binding sites on ccbe1 promoter to reduce their binding enrichment on the promoter, contributing to the potential mechanisms for down-regulation of ccbe1 and the formation of lymphangiogenesis defects in Cu2+-stressed embryos and mammalian cells. These integrated data demonstrate that Cu2+ stress impairs angiogenesis and lymphangiogenesis via down-regulation of pERK1/2-foxm1-MMP2/9 axis and epigenetic regulation of E2F7/8 transcriptional activity on ccbe1 expression, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478

    CAS  PubMed  Article  Google Scholar 

  2. Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL (2016) Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation 23(2):95–121

    PubMed  PubMed Central  Article  Google Scholar 

  3. Cueni LN, Detmar M (2006) New insights into the molecular control of the lymphatic vascular system and its role in disease. J Investig Dermatol 126(10):2167–2177

    CAS  PubMed  Article  Google Scholar 

  4. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476

    CAS  PubMed  Article  Google Scholar 

  5. Hogan BM, Schulte-Merker S (2017) How to plumb a pisces: understanding vascular development and disease using zebrafish embryos. Dev Cell 42(6):567–583

    CAS  PubMed  Article  Google Scholar 

  6. Flores MV, Hall CJ, Crosier KE, Crosier PS (2010) Visualization of embryonic lymphangiogenesis advances the use of the zebrafish model for research in cancer and lymphatic pathologies. Dev Dyn 239(7):2128–2135

    CAS  PubMed  Article  Google Scholar 

  7. Isogai S, Lawson ND, Torrealday S, Horiguchi M, Weinstein BM (2003) Angiogenic network formation in the developing vertebrate trunk. Development 130(21):5281–5290

    CAS  PubMed  Article  Google Scholar 

  8. Kohli V, Schumacher JA, Desai SP, Rehn K, Sumanas S (2013) Arterial and venous progenitors of the major axial vessels originate at distinct locations. Dev Cell 25(2):196–206

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Nicenboim J, Malkinson G, Lupo T, Asaf L, Sela Y, Mayseless O, Gibbs-Bar L, Senderovich N, Hashimshony T, Shin M, Jerafi-Vider A, Avraham-Davidi IK, Hofi R, Almog G, Astin JW, Golani O, Ben-Dor S, Crosier PS, Herzog W, Lawson ND, Hanna JH, Yanai I, Yaniv K (2015) Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature 522(7554):56–61

    CAS  PubMed  Article  Google Scholar 

  10. Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12(6):711–716

    CAS  PubMed  Article  Google Scholar 

  11. Wang Y, Li Z, Xu P, Huang L, Tong J, Huang H, Meng A (2011) Angiomotin-like2 gene (amotl2) is required for migration and proliferation of endothelial cells during angiogenesis. J Biol Chem 286(47):41095–41104

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Bahary N, Goishi K, Stuckenholz C, Weber G, Leblanc J, Schafer CA, Berman SS, Klagsbrun M, Zon LI (2007) Duplicate VegfA genes and orthologues of the KDR receptor tyrosine kinase family mediate vascular development in the zebrafish. Blood 110(10):3627–3636

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Wang G, Muhl L, Padberg Y, Dupont L, Peterson-Maduro J, Stehling M, le Noble F, Colige A, Betsholtz C, Schulte-Merker S, van Impel A (2020) Specific fibroblast subpopulations and neuronal structures provide local sources of Vegfc-processing components during zebrafish lymphangiogenesis. Nat Commun 11(1):2724

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Harris ED (2004) A Requirement for copper in angiogenesis. Nutr Rev 62(2):60–64

    PubMed  Article  Google Scholar 

  15. Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4(3):176–185

    CAS  PubMed  Article  Google Scholar 

  16. Finney L, Vogt S, Fukai T, Glesne D (2010) Copper and angiogenesis: unravelling a relationship key to cancer progression. Clin Exp Pharmacol Physiol 36(1):88–94

    Article  CAS  Google Scholar 

  17. Mroczek-Sosnowska N, Sawosz E, Vadalasetty K, Łukasiewicz M, Niemiec J, Wierzbicki M, Kutwin M, Jaworski S, Chwalibog A (2015) Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. Int J Mol Sci 16(3):4838–4849

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Wang Z, Zhao Y, Zhao Y, Zhang Y, Yao X, Hang R (2021) Exosomes secreted by macrophages upon copper ion stimulation can promote angiogenesis. Mater Sci Eng C 123(18):111981

    CAS  Article  Google Scholar 

  19. Karginova O, Weekley CM, Raoul A, Alsayed A, Wu T, Lee SS, He C, Olopade OI (2019) Inhibition of copper transport induces apoptosis in triple negative breast cancer cells and suppresses tumor angiogenesis. Mol Cancer Ther 18(5):873–885

    CAS  PubMed  Article  Google Scholar 

  20. Pan Q, Kleer CG, Golen K, Irani J, Bottema KM, Bias C, De Carvalho M, Mesri EA, Robins DM, Dick RD, Brewer GJ, Merajver SD (2002) Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Can Res 62(17):4854–4859

    CAS  Google Scholar 

  21. Xie H, Kang YJ (2009) Role of copper in angiogenesis and its medicinal implications. Curr Med Chem 16(10):1304–1314

    CAS  PubMed  Article  Google Scholar 

  22. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95(23):13363–13383

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Brown DR, Wong B-S, Hafiz F, Clive C, Haswell SJ, Jones IM (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem J 344(1):1–5

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Urso E, Manno D, Serra A, Buccolieri A, Rizzello A, Danieli A, Acierno R, Salvato B, Maffia M (2012) Role of the cellular prion protein in the neuron adaptation strategy to copper deficiency. Cell Mol Neurobiol 32(6):989–1001

    CAS  PubMed  Article  Google Scholar 

  25. Nagai M, Vo NH, Ogawa LS, Chimmanamada D, Inoue T, Chu J, Beaudette-Zlatanova BC, Lu R, Blackman RK, Barsoum J, Koya K, Wada Y (2012) The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic Biol Med 52(10):2142–2150

    CAS  PubMed  Article  Google Scholar 

  26. Liu JX, Xu QH, Li S, Yu XD, Liu WY, Ouyang G, Zhang T, Chen LL (2017) Transcriptional factors Eaf1/2 inhibit endoderm and mesoderm formation via suppressing TGF-β signaling. Biochimica et Biophysica Acta (BBA) 10:1103–1116

    Article  CAS  Google Scholar 

  27. Chen MY, Luo Y, Xu JP, Chang MX, Liu JX (2019) Copper regulates the susceptibility of zebrafish larvae to inflammatory stimuli by controlling neutrophil/macrophage survival. Front Immunol 10:2599

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Dodani SC, Domaille DW, Nam CI, Miller EW, Finney LA, Vogt S, Chang CJ (2011) Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy. Proc Natl Acad Sci USA 108(15):5980–5985

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Zhang T, Guan PP, Liu WY, Zhao G, Fang YP, Fu H, Gui JF, Li GL, Liu JX (2020) Copper stress induces zebrafish central neural system myelin defects via WNT/NOTCH-hoxb5b signaling and pou3f1/fam168a/fam168b DNA methylation. Biochimica et Biophysica Acta (BBA) 10:194612

    Article  CAS  Google Scholar 

  30. Tai ZP, Guan PP, Wang ZY, Li LY, Zhang T, Li GL, Liu JX (2019) Common responses of fish embryos to metals: an integrated analysis of transcriptomes and methylomes in zebrafish embryos under the stress of copper ions or silver nanoparticles. Metallomics 11(9):1452–1464

    CAS  PubMed  Article  Google Scholar 

  31. Liu JX, Zhang D, Xie X, Ouyang G, Liu X, Sun Y, Xiao W (2013) Eaf1 and Eaf2 negatively regulate canonical Wnt/beta-catenin signaling. Development 140(5):1067–1078

    CAS  PubMed  Article  Google Scholar 

  32. Jin XD, Liu WY, Miao J, Tai ZP, Li LY, Guan PP, Liu JX (2021) Copper ions impair zebrafish skeletal myofibrillogenesis via epigenetic regulation. FASEB J 35(7):e21686

    CAS  PubMed  Article  Google Scholar 

  33. Zhang T, Xu L, Wu JJ, Wang WM, Mei J, MaLJ XFX (2015) Transcriptional responses and mechanisms of copper-induced dysfunctional locomotor behavior in zebrafish embryos. Toxicol Sci 148(1):299–310

    CAS  PubMed  Article  Google Scholar 

  34. Bos FL, Caunt M, Peterson-Maduro J, Planas-Paz L, Kowalski J, Karpanen T, van Impel A, Tong R, Ernst JA, Korving J, van Es JH, Lammert E, Duckers HJ, Schulte-Merker S (2011) CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res 109(5):486–491

    CAS  PubMed  Article  Google Scholar 

  35. Hogan BM, Bos FL, Bussmann J, Witte M, Chi NC, Duckers HJ, Schulte-Merker S (2009) Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat Genet 41(4):396–398

    CAS  PubMed  Article  Google Scholar 

  36. Van Impel A, Schulte-Merker S (2014) A fisheye view on lymphangiogenesis. Adv Anat Embryol Cell Biol 214:153–165

    PubMed  Article  Google Scholar 

  37. Weijts BG, van Impel A, Schulte-Merker S, de Bruin A (2013) Atypical E2fs control lymphangiogenesis through transcriptional regulation of Ccbe1 and Flt4. PLoS ONE 8(9):e73693

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Coso S, Bovay E, Petrova TV (2014) Pressing the right buttons: signaling in lymphangiogenesis. Blood 123(17):2614–2624

    CAS  PubMed  Article  Google Scholar 

  39. Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1(3):219–227

    CAS  PubMed  Article  Google Scholar 

  40. Schuermann A, Helker CS, Herzog W (2014) Angiogenesis in zebrafish. Semin Cell Dev Biol 31:106–114

    CAS  PubMed  Article  Google Scholar 

  41. Lohela M, Bry M, Tammela T, Alitalo K (2009) VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21(2):154–165

    CAS  PubMed  Article  Google Scholar 

  42. Katz M, Amit I, Yarden Y (2007) Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochimica et Biophysica Acta (BBA) 1773(8):1161–1176

    CAS  Article  Google Scholar 

  43. Laoukili J, Kooistra MR, Brás A, Kauw J, Kerkhoven RM, Morrison A, Clevers H, Medema RH (2005) FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol 7(2):126–136

    CAS  PubMed  Article  Google Scholar 

  44. Wen N, Wang Y, Wen L, Zhao SH, Ai ZH, Wang Y, Wu B, Lu HX, Yang H, Liu WC, Li Y (2014) Overexpression of FOXM1 predicts poor prognosis and promotes cancer cell proliferation, migration and invasion in epithelial ovarian cancer. J Transl Med 12(1):134

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. Yi C, Troutman S, Fera D, Stemmer-Rachamimov A, Avila J, Christian N, Persson N, Shimono A, Speicher D, Marmorstein R, Holmgren L, Kissil JL (2011) A tight junction-associated merlin-angiomotin complex mediates merlin’s regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell 19(4):527–540

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Lok GT, Chan DW, Liu VW, Hui WW, Leung TH, Yao KM, Ngan HY (2011) Aberrant activation of ERK/FOXM1 signaling cascade triggers the cell migration/invasion in ovarian cancer cells. PLoS ONE 6(8):e23790

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Le Guen L, Karpanen T, Schulte D, Harris NC, Koltowska K, Roukens G, Bower NI, Van Impel A, Stacker SA, Achen MG, Schulte-Merker S, Hogan BM (2014) Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 141(6):1239–1249

    PubMed  Article  CAS  Google Scholar 

  48. Jin Y, Zhang C, Xu H, Xue S, Wang Y, Yong H, Kong Y, Xu Y (2011) Combined effects of serum trace metals and polymorphisms of CYP1A1 or GSTM1 on non-small cell lung cancer: a hospital based case-control study in China. Cancer Epidemiol 35(2):182–187

    CAS  PubMed  Article  Google Scholar 

  49. Majumder S, Chatterjee S, Pal S, Biswas J, Efferth T, Choudhuri SK (2009) The role of copper in drug-resistant murine and human tumors. Biometals 22(2):377–384

    CAS  PubMed  Article  Google Scholar 

  50. Zowczak M, Iskra M, Paszkowski J, MańczakTorlinskiWysocka MLE (2001) Oxidase activity of ceruloplasmin and concentrations of copper and zinc in serum of cancer patients. J Trace Elem Med Biol 15(2–3):193–196

    CAS  PubMed  Article  Google Scholar 

  51. Moriguchi M, Nakajima T, Kimura H, Watanabe T, Takashima H, Mitsumoto Y, Katagishi T, Okanoue T, Kagawa K (2002) The copper chelator trientine has an antiangiogenic effect against hepatocellular carcinoma, possibly through inhibition of interleukin-8 production. Int J Cancer 102(5):445–452

    CAS  PubMed  Article  Google Scholar 

  52. Ishida S, Andreux P, Poitry-Yamate C, Auwerx J, Hanahan D (2013) Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad Sci USA 110(48):19507–19512

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Iskra M, Patelski J, Majewski W (1997) Relationship of calcium, magnesium, zinc and copperconcentrations in the arterial wall and serum in atherosclerosis obliterans and aneurysm. J Trace Elem Med Biol 11(4):248–252

    CAS  PubMed  Article  Google Scholar 

  54. Iskra M, Majewski W (2000) Copper and zinc concentrations and the activities of ceruloplasmin and superoxide dismutase in atherosclerosis obliterans. Biol Trace Elem Res 73(1):55–65

    CAS  PubMed  Article  Google Scholar 

  55. Wang JC, Bennett M (2012) Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 111(2):245–259

    CAS  PubMed  Article  Google Scholar 

  56. Hainaut P, Rolley N, Davies M, Milner J (1995) Modulation by copper of p53 conformation and sequence-specific DNA binding: role for Cu (II)/Cu (I) redox mechanism. Oncogene 10(1):27–32

    CAS  PubMed  Google Scholar 

  57. Bogaard HJ, Mizuno S, Guignabert C, Al Hussaini AA, Farkas D, Ruiter G, Kraskauskas D, Fadel E, Allegood JC, Humbert M, Vonk NA, Spiegel S, Farkas L, Voelkel NF (2012) Copper dependence of angioproliferation in pulmonary arterial hypertension in rats and humans. Am J Respir Cell Mol Biol 46(5):582–591

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. Anming Meng (Tsinghua University), Feng Liu (Institute of zoology, Chinese Academy of Science) for providing transgenic fish. This work was supported by the National Key R&D Program of China (2018YFD0900101), by the National Natural Science Foundation of China (Program No. 32070807), and by the project 2020SKLBC-KF06 of State Key Laboratory of Biocontrol.

Author information

Authors and Affiliations

Authors

Contributions

J-X, ZT, and LL designed the experiments; ZT, LL, and GZ performed the experiments; J-XL and ZT wrote the manuscript.

Corresponding author

Correspondence to Jing-Xia Liu.

Ethics declarations

Conflict of interest

No potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MOV 416 kb)

Supplementary file2 (MOV 1534 kb)

Supplementary file3 (MOV 859 kb)

Supplementary file4 (XLS 56 kb)

Supplementary file5 (DOCX 508 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tai, Z., Li, L., Zhao, G. et al. Copper stress impairs angiogenesis and lymphangiogenesis during zebrafish embryogenesis by down-regulating pERK1/2-foxm1-MMP2/9 axis and epigenetically regulating ccbe1 expression. Angiogenesis 25, 241–257 (2022). https://doi.org/10.1007/s10456-021-09827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-021-09827-0

Keywords

  • Copper
  • Angiogenesis
  • Lymphangiogenesis
  • Foxm1
  • E2F7/8
  • ccbe1