Skip to main content
Log in

Dysbiotic stress increases the sensitivity of the tumor vasculature to radiotherapy and c-Met inhibitors

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Antibiotic-induced microbial imbalance, or dysbiosis, has systemic and long-lasting effects on the host and response to cancer therapies. However, the effects on tumor endothelial cells are largely unknown. Therefore, the goal of the current study was to generate matched B16-F10 melanoma associated endothelial cell lines isolated from mice with and without antibiotic-induced dysbiosis. After validating endothelial cell markers on a genomic and proteomic level, functional angiogenesis assays (i.e., migration and tube formation) also confirmed their vasculature origin. Subsequently, we found that tumor endothelial cells derived from dysbiotic mice (TEC-Dys) were more sensitive to ionizing radiotherapy in the range of clinically-relevant hypofractionated doses, as compared to tumor endothelial cells derived from orthobiotic mice (TEC-Ortho). In order to identify tumor vasculature-associated drug targets during dysbiosis, we used tandem mass tag mass spectroscopy and focused on the statistically significant cellular membrane proteins overexpressed in TEC-Dys. By these criteria c-Met was the most differentially expressed protein, which was validated histologically by comparing tumors with or without dysbiosis. Moreover, in vitro, c-Met inhibitors Foretinib, Crizotinib and Cabozantinib were significantly more effective against TEC-Dys than TEC-Ortho. In vivo, Foretinib inhibited tumor growth to a greater extent during dysbiosis as compared to orthobiotic conditions. Thus, we surmise that tumor response in dysbiotic patients may be greatly improved by targeting dysbiosis-induced pathways, such as c-Met, distinct from the many targets suppressed due to dysbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, Spencer S, Hall JA, Dzutsev A, Kong H, Campbell DJ, Trinchieri G, Segre JA, Belkaid Y (2012) Compartmentalized control of skin immunity by resident commensals. Science 337(6098):1115–1119. https://doi.org/10.1126/science.1225152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kilkkinen A, Rissanen H, Klaukka T, Pukkala E, Heliovaara M, Huovinen P, Mannisto S, Aromaa A, Knekt P (2008) Antibiotic use predicts an increased risk of cancer. Int J Cancer 123(9):2152–2155. https://doi.org/10.1002/ijc.23622

    Article  CAS  PubMed  Google Scholar 

  3. Cheng M, Qian L, Shen G, Bian G, Xu T, Xu W, Shen G, Hu S (2014) Microbiota modulate tumoral immune surveillance in lung through a gammadeltaT17 immune cell-dependent mechanism. Cancer Res 74:4030–4041. https://doi.org/10.1158/0008-5472.CAN-13-2462

    Article  CAS  PubMed  Google Scholar 

  4. Uribe-Herranz M, Bittinger K, Rafail S, Guedan S, Pierini S, Tanes C, Ganetsky A, Morgan MA, Gill S, Tanyi JL, Bushman FD, June CH, Facciabene A (2018) Gut microbiota modulates adoptive cell therapy via CD8alpha dendritic cells and IL-12. JCI Insight. https://doi.org/10.1172/jci.insight.94952

    Article  PubMed  PubMed Central  Google Scholar 

  5. CDC (2017) Antibiotic use in the United States, 2017: progress and opportunities. US department of Health and human Services, Atlanta

    Google Scholar 

  6. Jenkins SV, Robeson MS, Griffin RJ, Quick CM, Siegel ER, Cannon MJ, Vang KB, Dings RPM (2019) Gastrointestinal tract dysbiosis enhances distal tumor progression through suppression of leukocyte trafficking. Cancer Res 79(23):5999–6009. https://doi.org/10.1158/0008-5472.CAN-18-4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Almeida RR, Vieira RS, Castoldi A, Terra FF, Melo ACL, Canesso MCC, Lemos L, Cipelli M, Rana N, Hiyane MI, Pearce EL, Martins FDS, Faria AMC, Camara NOS (2020) Host dysbiosis negatively impacts IL-9-producing T-cell differentiation and antitumour immunity. Br J Cancer 123(4):534–541. https://doi.org/10.1038/s41416-020-0915-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu N, Wang L, Li C, Ding C, Li C, Fan W, Cheng C, Gu B (2020) Microbiota dysbiosis in lung cancer: evidence of association and potential mechanisms. Transl Lung Cancer Res 9(4):1554–1568. https://doi.org/10.21037/tlcr-20-156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  10. Dudley AC (2012) Tumor endothelial cells. Cold Spring Harb Perspect Med 2(3):a006536. https://doi.org/10.1101/cshperspect.a006536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachaty E, Woerther PL, Eberl G, Berard M, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau V, Cerf-Bensussan N, Opolon P, Yessaad N, Vivier E, Ryffel B, Elson CO, Dore J, Kroemer G, Lepage P, Boneca IG, Ghiringhelli F, Zitvogel L (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342(6161):971–976. https://doi.org/10.1126/science.1240537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pinato DJ, Howlett S, Ottaviani D, Urus H, Patel A, Mineo T, Brock C, Power D, Hatcher O, Falconer A, Ingle M, Brown A, Gujral D, Partridge S, Sarwar N, Gonzalez M, Bendle M, Lewanski C, Newsom-Davis T, Allara E, Bower M (2019) Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2019.2785

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sharma SV, Haber DA, Settleman J (2010) Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer 10(4):241–253. https://doi.org/10.1038/nrc2820

    Article  CAS  PubMed  Google Scholar 

  14. Dings RP, Van Laar ES, Webber J, Zhang Y, Griffin RJ, Waters SJ, MacDonald JR, Mayo KH (2008) Ovarian tumor growth regression using a combination of vascular targeting agents anginex or topomimetic 0118 and the chemotherapeutic irofulven. Cancer Lett 265(2):270–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dings RP, Vang KB, Castermans K, Popescu F, Zhang Y, Oude Egbrink MG, Mescher MF, Farrar MA, Griffioen AW, Mayo KH (2011) Enhancement of T-cell-mediated antitumor response: angiostatic adjuvant to immunotherapy against cancer. Clin Cancer Res 17(10):3134–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dings RP, Loren M, Heun H, McNiel E, Griffioen AW, Mayo KH, Griffin RJ (2007) Scheduling of radiation with angiogenesis inhibitors Anginex and Avastin improves therapeutic outcome via vessel normalization. Clin Cancer Res 13(11):3395–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A (2011) Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA 108(13):5354–5359. https://doi.org/10.1073/pnas.1019378108

    Article  PubMed  PubMed Central  Google Scholar 

  18. van Beijnum JR, Rousch M, Castermans K, van der Linden E, Griffioen AW (2008) Isolation of endothelial cells from fresh tissues. Nat Protoc 3(6):1085–1091

    Article  PubMed  Google Scholar 

  19. Thijssen VL, Brandwijk RJ, Dings RP, Griffioen AW (2004) Angiogenesis gene expression profiling in xenograft models to study cellular interactions. Exp Cell Res 299(2):286–293

    Article  CAS  PubMed  Google Scholar 

  20. Jenkins S, Nima Z, Vang KB, Nedosekin D, Zharov VP, Griffin RJ, Biris AS, Dings RPM (2017) Triple negative breast cancer targeting and killing by EpCAM-directed, plasmonically active nanodrug systems. Precis Oncol 1(1):1–11. https://doi.org/10.1038/s41698-017-0030-1

    Article  CAS  Google Scholar 

  21. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Bock BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquiere B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de VM, van Hinsbergh Vermeulen VWM, Waltenberger PB, Weinstein J, Xin BM, Yetkin-Arik H, Yla-Herttuala B, Yoder S, Griffioen MCAW (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis. https://doi.org/10.1007/s10456-018-9613-x

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dings RP, Chen X, Hellebrekers DM, van Eijk LI, Zhang Y, Hoye TR, Griffioen AW, Mayo KH (2006) Design of nonpeptidic topomimetics of antiangiogenic proteins with antitumor activities. J Natl Cancer Inst 98(13):932–936

    Article  CAS  PubMed  Google Scholar 

  23. Jenkins SV, Nedosekin DA, Shaulis BJ, Wang T, Jamshidi-Parsian A, Pollock ED, Chen J, Dings RPM, Griffin RJ (2019) Enhanced photothermal treatment efficacy and normal tissue protection via vascular targeted gold nanocages. Nanotheranostics 3(2):145–155. https://doi.org/10.7150/ntno.32395

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shields BD, Koss B, Taylor EM, Storey AJ, West KL, Byrum SD, Mackintosh SG, Edmondson R, Mahmoud F, Shalin SC, Tackett AJ (2019) Loss of E-cadherin inhibits CD103 antitumor activity and reduces checkpoint blockade responsiveness in melanoma. Cancer Res 79(6):1113–1123. https://doi.org/10.1158/0008-5472.CAN-18-1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Graw S, Tang J, Zafar MK, Byrd AK, Bolden CT, Peterson EC, Byrum SD (2020) ProteiNorm—a user-friendly tool for normalization and analysis of TMT and label-free protein quantification. ACS Omega. https://doi.org/10.1021/acsomega.0c02564

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–S104. https://doi.org/10.1093/bioinformatics/18.suppl_1.s96

    Article  PubMed  Google Scholar 

  27. Bolstad B (2020) PreprocessCore: a collection of pre-processing functions., R package version 1.50.0 edn

  28. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chawade A, Alexandersson E, Levander F (2014) Normalyzer: a tool for rapid evaluation of normalization methods for omics data sets. J Proteome Res 13(6):3114–3120. https://doi.org/10.1021/pr401264n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32(18):2847–2849. https://doi.org/10.1093/bioinformatics/btw313

    Article  CAS  PubMed  Google Scholar 

  31. Dings RP, Miller MC, Nesmelova I, Astorgues-Xerri L, Kumar N, Serova M, Chen X, Raymond E, Hoye TR, Mayo KH (2012) Antitumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding. J Med Chem 55(11):5121–5129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Palma DA, Olson R, Harrow S, Gaede S, Louie AV, Haasbeek C, Mulroy L, Lock M, Rodrigues GB, Yaremko BP, Schellenberg D, Ahmad B, Griffioen G, Senthi S, Swaminath A, Kopek N, Liu M, Moore K, Currie S, Bauman GS, Warner A, Senan S (2019) Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet 393(10185):2051–2058. https://doi.org/10.1016/S0140-6736(18)32487-5

    Article  PubMed  Google Scholar 

  33. Timmerman RD, Herman J, Cho LC (2014) Emergence of stereotactic body radiation therapy and its impact on current and future clinical practice. J Clin Oncol 32(26):2847–2854. https://doi.org/10.1200/JCO.2014.55.4675

    Article  PubMed  PubMed Central  Google Scholar 

  34. Johnsrud AJ, Jenkins SV, Jamshidi-Parsian A, Quick CM, Galhardo EP, Dings RPM, Vang KB, Narayanasamy G, Makhoul I, Griffin RJ (2020) Evidence for early stage anti-tumor immunity elicited by spatially fractionated radiotherapy-immunotherapy combinations. Radiat Res. https://doi.org/10.1667/RADE-20-00065.1

    Article  PubMed  PubMed Central  Google Scholar 

  35. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, Cho BC, Bourhaba M, Quantin X, Tokito T, Mekhail T, Planchard D, Kim YC, Karapetis CS, Hiret S, Ostoros G, Kubota K, Gray JE, Paz-Ares L, de Castro Carpeno J, Wadsworth C, Melillo G, Jiang H, Huang Y, Dennis PA, Ozguroglu M, Investigators P (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 377(20):1919–1929. https://doi.org/10.1056/NEJMoa1709937

    Article  CAS  PubMed  Google Scholar 

  36. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, Cogdill AP, Zhao L, Hudgens CW, Hutchinson DS, Manzo T, Petaccia de Macedo M, Cotechini T, Kumar T, Chen WS, Reddy SM, Szczepaniak Sloane R, Galloway-Pena J, Jiang H, Chen PL, Shpall EJ, Rezvani K, Alousi AM, Chemaly RF, Shelburne S, Vence LM, Okhuysen PC, Jensen VB, Swennes AG, McAllister F, Marcelo Riquelme Sanchez E, Zhang Y, Le Chatelier E, Zitvogel L, Pons N, Austin-Breneman JL, Haydu LE, Burton EM, Gardner JM, Sirmans E, Hu J, Lazar AJ, Tsujikawa T, Diab A, Tawbi H, Glitza IC, Hwu WJ, Patel SP, Woodman SE, Amaria RN, Davies MA, Gershenwald JE, Hwu P, Lee JE, Zhang J, Coussens LM, Cooper ZA, Futreal PA, Daniel CR, Ajami NJ, Petrosino JF, Tetzlaff MT, Sharma P, Allison JP, Jenq RR, Wargo JA (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371):97–103. https://doi.org/10.1126/science.aan4236

    Article  CAS  PubMed  Google Scholar 

  37. Qian F, Engst S, Yamaguchi K, Yu P, Won KA, Mock L, Lou T, Tan J, Li C, Tam D, Lougheed J, Yakes FM, Bentzien F, Xu W, Zaks T, Wooster R, Greshock J, Joly AH (2009) Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res 69(20):8009–8016. doi:https://doi.org/10.1158/0008-5472.CAN-08-4889

    Article  CAS  PubMed  Google Scholar 

  38. Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S, Koudriakova TB, Alton G, Cui JJ, Kung PP, Nambu MD, Los G, Bender SL, Mroczkowski B, Christensen JG (2007) An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 67(9):4408–4417. https://doi.org/10.1158/0008-5472.CAN-06-4443

    Article  CAS  PubMed  Google Scholar 

  39. You WK, Sennino B, Williamson CW, Falcon B, Hashizume H, Yao LC, Aftab DT, McDonald DM (2011) VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer. Cancer Res 71(14):4758–4768. https://doi.org/10.1158/0008-5472.CAN-10-2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang M, Liu T, Ma P, Mitteer RA Jr, Zhang Z, Kim HJ, Yeo E, Zhang D, Cai P, Li C, Zhang L, Zhao B, Roccograndi L, O’Rourke DM, Dahmane N, Gong Y, Koumenis C, Fan Y (2016) c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest 126(5):1801–1814. https://doi.org/10.1172/JCI84876

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kovacic JC, Mercader N, Torres M, Boehm M, Fuster V (2012) Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation 125(14):1795–1808. https://doi.org/10.1161/CIRCULATIONAHA.111.040352

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961

    Article  CAS  PubMed  Google Scholar 

  43. Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67(21):10123–10128

    Article  CAS  PubMed  Google Scholar 

  44. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ, Gajewski TF (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359(6371):104–108. https://doi.org/10.1126/science.aao3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, Narushima S, Vlamakis H, Motoo I, Sugita K, Shiota A, Takeshita K, Yasuma-Mitobe K, Riethmacher D, Kaisho T, Norman JM, Mucida D, Suematsu M, Yaguchi T, Bucci V, Inoue T, Kawakami Y, Olle B, Roberts B, Hattori M, Xavier RJ, Atarashi K, Honda K (2019) A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565(7741):600–605. https://doi.org/10.1038/s41586-019-0878-z

    Article  CAS  PubMed  Google Scholar 

  46. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723. https://doi.org/10.1016/j.cell.2017.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xavier JB, Young VB, Skufca J, Ginty F, Testerman T, Pearson AT, Macklin P, Mitchell A, Shmulevich I, Xie L, Caporaso JG, Crandall KA, Simone NL, Godoy-Vitorino F, Griffin TJ, Whiteson KL, Gustafson HH, Slade DJ, Schmidt TM, Walther-Antonio MRS, Korem T, Webb-Robertson BM, Styczynski MP, Johnson WE, Jobin C, Ridlon JM, Koh AY, Yu M, Kelly L, Wargo JA (2020) The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends Cancer 6(3):192–204. https://doi.org/10.1016/j.trecan.2020.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was supported by P20GM103625: the Center for Microbial Pathogenesis and Host Inflammatory Responses grant through the NIH National Institute of General Medical Sciences Centers of Biomedical Research Excellence, as well as in part by a seed grant from the Vice Chancellor of Research & Innovation, and the Arkansas Biosciences Institute and the Winthrop P. Rockefeller Cancer Institute to R.P.M. Dings. The study was also supported in part by the Translational Research Institute (TRI), grant TL1 TR003109 through the National Center for Advancing Translational Sciences of the National Institutes of Health (NIH) to S.V. Jenkins. K.B. Vang and R.J. Griffin received support from NSF OIA-1457888 through the Center for Advanced Surface Engineering. J.W. Leung was supported by NIH (K22CA204354 and R35GM137798) and Arkansas Breast Cancer Research Program (AWD00054499 and AWD00053730).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in part to elements of the study’s conception, design or execution. Material preparation, data collection and analysis were performed by SVJ, MA, AST, KBV, SDB, and RPMD. The first draft of the manuscript was written by RPMD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ruud P. M. Dings.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PS 6469 kb)

Supplemental Fig. 1. Molecular marker authentication of TEC-Ortho and TEC-Dys validating endothelial origin. Representative composite RT-PCR blot of TEC-Ortho and TEC-Dys expressing endothelial cell markers Tie-2, TNFR1, NRP1, Galectin-1 (Gal-1), and Galectin-3 (Gal-3).

Supplementary material 2 (PS 515 kb)

Supplemental Fig. 2. TEC-Dys and TEC-Ortho do not express melanoma markers. (a) B16-F10 express GP100, whereas TEC-Dys do not. (b) Quantification of GP100 and (c) MART-1 on B16-F10, TEC-Ortho, TEC-Dys and 2H11. Data presented as mean ± SEM (n = 5 per melanoma marker pooled from 2 representative experiments). **P < 0.01, **P < 0.001 two-sided t-test. FMO = fluorescence minus one.

Supplementary material 3 (PS 119 kb)

Supplemental Fig. 3. Ampicillin, neomycin, metronidazole, and vancomycin do not directly influence TEC-Ortho, TEC-Dys or 2H11. The cell viability of -TEC-Ortho, TEC-Dys and 2H11 after 72 h being exposed to various concentrations of (a) Ampicillin, (b) Neomycin, (c) Metronidazole, and (d) Vancomycin. Data presented as means ± SD pooled from 2 experiments.

Supplementary material 4 (PS 140 kb)

Supplemental Fig. 4. No differential in intracellular ROS production by TEC-Ortho and TEC-Dys during radiation as measured by dichlorofluorescein diacetate. Cells were seeded in 96-well plates (Corning Costar #3603) at 5000 cells per well and allowed to adhere overnight. Medium was removed and cells were incubated for 1 hour with 1 μM dichlorofluorescein diacetate in PBS. Cells were then irradiated and the fluorescence (492 nm excitation, 515 nm emission) was measured. Background ROS was measured with the same incubation time and 0 Gy radiation and subtracted from radiation values.

Supplementary material 5 (PS 204 kb)

Supplemental Fig. 5. Mean dispersion plot showing all proteins identified by TMT-MS3 between TEC-Ortho and TEC-Dys. X-axis is the log2 intensity for each protein across all samples. Y-axis is log2 fold change of FDR-adjusted P-value. FDR-adjusted P-values < 0.05 and fold change > 2 are highlighted in red and fold change < -2 are highlighted in blue.

Supplementary material 6 (PS 129 kb)

Supplemental Fig. 6. C-Met inhibitor JNJ-38877605 has no effect on TEC-Ortho and TEC-Dys. The cell viability of Tec-Ortho and TEC-Dys after 72 hr being exposed to various concentrations of JNJ-38877605. Data presented as means ± SEM, pooled from 3 experiments with triplicates.

Supplementary material 7 (PS 429 kb)

Supplemental Fig. 7. Heat shock protein 27 (HSP27), part of the VEGF signaling pathway, is differentially expressed in TEC-Dys as compared to TEC-Ortho. Based on TMT-MS3 analysis, proteins deemed significantly overexpressed in TEC-Dys were superimposed in blue on the Kyoto encyclopedia of genes and genomes (KEGG) VEGF pathway. HSP27 was identified within this pathway.

Supplementary material 8 (PS 955 kb)

Supplemental Fig. 8. Heat shock protein 27 (HSP27), part of the receptor tyrosine kinase (RTK), and mitogen activated protein kinase (MAPK) signaling pathway is differentially expressed in TEC-Dys as compared to TEC-Ortho. Based on TMT-MS3 analysis, proteins deemed significantly overexpressed in TEC-Dys were superimposed in blue on the Kyoto encyclopedia of genes and genomes (KEGG) MAPK pathway. HSP27 was identified within this pathway.

Supplementary material 9 (PS 688 kb)

Supplemental Fig. 9. No significant proteomic changes within the phosphatidylinositol 3-kinase (PI3K-AKT) signaling pathway were detected in TEC-Dys as compared to TEC-Ortho. Based on TMT-MS3 analysis, no proteins within the PI3K-AKT pathway were deemed significantly overexpressed in TEC-Dys. The PI3K-AKT signaling pathway is depicted based on the Kyoto encyclopedia of genes and genomes (KEGG).

Supplementary material 10 (PS 174 kb)

Supplemental Table 1. Primer sequences of endothelial cell markers.

Supplementary material 11 (PS 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenkins, S.V., Alimohammadi, M., Terry, A.S. et al. Dysbiotic stress increases the sensitivity of the tumor vasculature to radiotherapy and c-Met inhibitors. Angiogenesis 24, 597–611 (2021). https://doi.org/10.1007/s10456-021-09771-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-021-09771-z

Keywords

Navigation