Skip to main content

Advertisement

Log in

Vessel tech: a high-accuracy pipeline for comprehensive mouse retinal vasculature characterization

  • Letter
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Mouse retinal vasculature is a well-recognized and commonly used animal model for angiogenesis and microvascular remodeling. Morphological features of retinal vasculature reflect the vessel’s biological functions, and are critical in understanding the physiological and pathological process of vascular development and disease. Here we developed a comprehensive software, Vessel Tech, using retinal vasculature images of postnatal mice. This pipeline can automatically process retinal vascular images, reconstruct vessel network with high accuracy and assess global and local vascular characteristics based on the recent machine-learning techniques. The development of Vessel Tech provides a powerful tool for vascular biologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Krishnan L, Chang CC, Nunes SS, Williams SK, Weiss JA, Hoying JB (2013) Manipulating the microvasculature and its microenvironment. Crit Rev Biomed Eng 41(2):91–123. https://doi.org/10.1615/critrevbiomedeng.2013008077

    Article  PubMed  PubMed Central  Google Scholar 

  2. Corliss BA, Mathews C, Doty R, Rohde G, Peirce SM (2019) Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation 26(5):e12520. https://doi.org/10.1111/micc.12520

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fruttiger M (2002) Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest Ophthalmol Vis Sci 43(2):522–527

    PubMed  Google Scholar 

  4. Franco CA, Jones ML, Bernabeu MO, Geudens I, Mathivet T, Rosa A, Lopes FM, Lima AP, Ragab A, Collins RT, Phng LK, Coveney PV, Gerhardt H (2015) Dynamic endothelial cell rearrangements drive developmental vessel regression. PLoS Biol 13(4):e1002125. https://doi.org/10.1371/journal.pbio.1002125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fruttiger M (2007) Development of the retinal vasculature. Angiogenesis 10(2):77–88. https://doi.org/10.1007/s10456-007-9065-1

    Article  PubMed  Google Scholar 

  6. Korn C, Scholz B, Hu J, Srivastava K, Wojtarowicz J, Arnsperger T, Adams RH, Boutros M, Augustin HG, Augustin I (2014) Endothelial cell-derived non-canonical Wnt ligands control vascular pruning in angiogenesis. Development 141(8):1757–1766. https://doi.org/10.1242/dev.104422

    Article  CAS  PubMed  Google Scholar 

  7. Pashaei M, Kamangir H, Starek MJ, Tissot P (2020) Review and evaluation of deep learning architectures for efficient land cover mapping with UAS hyper-spatial imagery: a case study over a Wetland. Remote Sens 12(6):959

    Article  Google Scholar 

  8. Niemisto A, Dunmire V, Yli-Harja O, Zhang W, Shmulevich I (2005) Robust quantification of in vitro angiogenesis through image analysis. IEEE Trans Med Imag 24(4):549–553. https://doi.org/10.1109/tmi.2004.837339

    Article  Google Scholar 

  9. Zudaire E, Gambardella L, Kurcz C, Vermeren S (2011) A computational tool for quantitative analysis of vascular networks. PLoS One 6(11):e27385. https://doi.org/10.1371/journal.pone.0027385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seaman ME, Peirce SM, Kelly K (2011) Rapid analysis of vessel elements (RAVE): a tool for studying physiologic, pathologic and tumor angiogenesis. PLoS One 6(6):e20807. https://doi.org/10.1371/journal.pone.0020807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Montoya-Zegarra JA, Russo E, Runge P, Jadhav M, Willrodt AH, Stoma S, Norrelykke SF, Detmar M, Halin C (2019) AutoTube: a novel software for the automated morphometric analysis of vascular networks in tissues. Angiogenesis 22(2):223–236. https://doi.org/10.1007/s10456-018-9652-3

    Article  CAS  PubMed  Google Scholar 

  12. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Transact Syst Man Cybernet 9(1):62–66

    Article  Google Scholar 

  13. Chazal F, Michel B (2017) An introduction to topological data analysis: fundamental and practical aspects for data scientists. https://arxiv.org/abs/1710.04019. Accessed June 26 2020

  14. Kolaczyk ED (2009) Statistical Analysis of Network Data. Springer, New York

    Book  Google Scholar 

  15. Pitulescu ME, Schmidt I, Benedito R, Adams RH (2010) Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice. Nat Protoc 5(9):1518–1534. https://doi.org/10.1038/nprot.2010.113

    Article  CAS  PubMed  Google Scholar 

  16. Majumder S, Zhu G, Xu X, Senchanthisai S, Jiang D, Liu H, Xue C, Wang X, Coia H, Cui Z, Smolock EM, Libby RT, Berk BC, Pang J (2016) G-protein-coupled receptor-2-interacting protein-1 controls stalk cell fate by inhibiting delta-like 4-notch1 signaling. Cell Rep 17(10):2532–2541. https://doi.org/10.1016/j.celrep.2016.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu G, Lin Y, Liu H, Jiang D, Singh S, Li X, Yu Z, Fan L, Wang S, Rhen J, Li W, Xu Y, Ge J, Pang J (2018) Dll4-Notch1 signaling but not VEGF-A is essential for hyperoxia induced vessel regression in retina. Biochem Biophys Res Commun 507(1–4):400–406. https://doi.org/10.1016/j.bbrc.2018.11.051

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Jay Hwang for editing the manuscript.

Funding

This work was supported by Jinjiang Pang’s Grants from the National Institutes of Health (R01 HL122777-05, R01 HL122777-06A1) and American Heart Association Innovative Project Award (19IPLOI34760446).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinjiang Pang or Zhengwu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4630 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhu, G., Wang, S. et al. Vessel tech: a high-accuracy pipeline for comprehensive mouse retinal vasculature characterization. Angiogenesis 24, 7–11 (2021). https://doi.org/10.1007/s10456-020-09752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-020-09752-8

Keywords

Navigation