Skip to main content
Log in

Endothelial deletion of ADAM10, a key regulator of Notch signaling, causes impaired decidualization and reduced fertility in female mice

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

During the initiation of pregnancy, the vasculature of the implantation site expands rapidly, yet little is known about this process or its role in fertility. Here, we report that endothelial-specific deletion of a disintegrin and metalloprotease 10 (ADAM10), an essential regulator of Notch signaling, results in severe subfertility in mice. We found that implantation sites develop until 5.5 days post conception (dpc) but are resorbed by 6.5 dpc in A10ΔEC mice. Analysis of the mutant implantation sites showed impaired decidualization and abnormal vascular patterning compared to controls. Moreover, RNA-seq analysis revealed changes in endothelial cell marker expression consistent with defective ADAM10/Notch signaling in samples from A10ΔEC mice, suggesting that this signaling pathways is essential for the physiological function of endometrial endothelial cells during early pregnancy. Our findings raise the possibility that impaired endothelial cell function could be a cause for repeated pregnancy loss (RPL) and infertility in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Plaisier M (2011) Decidualisation and angiogenesis. Best Pract Res Clin Obstet Gynaecol 25(3):259–271. https://doi.org/10.1016/j.bpobgyn.2010.10.011

    Article  PubMed  Google Scholar 

  2. Ramathal CY, Bagchi IC, Taylor RN, Bagchi MK (2010) Endometrial decidualization: of mice and men. Semin Reprod Med 28(1):17–26. https://doi.org/10.1055/s-0029-1242989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, Wang H (2004) Molecular cues to implantation. Endocr Rev 25(3):341–373. https://doi.org/10.1210/er.2003-0020

    Article  CAS  PubMed  Google Scholar 

  4. Wang H, Dey SK (2006) Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet 7(3):185–199. https://doi.org/10.1038/nrg1808

    Article  CAS  PubMed  Google Scholar 

  5. Cha J, Sun X, Dey SK (2012) Mechanisms of implantation: strategies for successful pregnancy. Nat Med 18(12):1754–1767. https://doi.org/10.1038/nm.3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fullerton PT Jr, Monsivais D, Kommagani R, Matzuk MM (2017) Follistatin is critical for mouse uterine receptivity and decidualization. Proc Natl Acad Sci U S A 114(24):E4772–E4781. https://doi.org/10.1073/pnas.1620903114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nallasamy S, Kaya Okur HS, Bhurke A, Davila J, Li Q, Young SL, Taylor RN, Bagchi MK, Bagchi IC (2019) Msx Homeobox Genes Act Downstream of BMP2 to Regulate Endometrial Decidualization in Mice and in Humans. Endocrinology 160(7):1631–1644. https://doi.org/10.1210/en.2019-00131

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kelleher AM, Peng W, Pru JK, Pru CA, DeMayo FJ, Spencer TE (2017) Forkhead box a2 (FOXA2) is essential for uterine function and fertility. Proc Natl Acad Sci U S A 114(6):E1018–E1026. https://doi.org/10.1073/pnas.1618433114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Afshar Y, Jeong JW, Roqueiro D, DeMayo F, Lydon J, Radtke F, Radnor R, Miele L, Fazleabas A (2012) Notch1 mediates uterine stromal differentiation and is critical for complete decidualization in the mouse. FASEB J 26(1):282–294. https://doi.org/10.1096/fj.11-184663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang S, Kong S, Wang B, Cheng X, Chen Y, Wu W, Wang Q, Shi J, Zhang Y, Wang S, Lu J, Lydon JP, DeMayo F, Pear WS, Han H, Lin H, Li L, Wang H, Wang YL, Li B, Chen Q, Duan E, Wang H (2014) Uterine Rbpj is required for embryonic-uterine orientation and decidual remodeling via Notch pathway-independent and -dependent mechanisms. Cell Res 24(8):925–942. https://doi.org/10.1038/cr.2014.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Su RW, Strug MR, Joshi NR, Jeong JW, Miele L, Lessey BA, Young SL, Fazleabas AT (2015) Decreased Notch pathway signaling in the endometrium of women with endometriosis impairs decidualization. J Clin Endocrinol Metab 100(3):E433–442. https://doi.org/10.1210/jc.2014-3720

    Article  CAS  PubMed  Google Scholar 

  12. Shawber CJ, Lin L, Gnarra M, Sauer MV, Papaioannou VE, Kitajewski JK, Douglas NC (2015) Vascular Notch proteins and Notch signaling in the peri-implantation mouse uterus. Vasc Cell 7:9. https://doi.org/10.1186/s13221-015-0034-y

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alabi RO, Farber G, Blobel CP (2018) Intriguing Roles for Endothelial ADAM10/Notch Signaling in the Development of Organ-Specific Vascular Beds. Physiol Rev 98(4):2025–2061. https://doi.org/10.1152/physrev.00029.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21(20):2511–2524

    Article  CAS  PubMed  Google Scholar 

  15. Ehling M, Adams S, Benedito R, Adams RH (2013) Notch controls retinal blood vessel maturation and quiescence. Development 140(14):3051–3061. https://doi.org/10.1242/dev.093351

    Article  CAS  PubMed  Google Scholar 

  16. Gridley T (2007) Notch signaling in vascular development and physiology. Development 134(15):2709–2718

    Article  CAS  PubMed  Google Scholar 

  17. Gridley T (2010) Notch signaling in the vasculature. Curr Top Dev Biol 92:277–309. https://doi.org/10.1016/S0070-2153(10)92009-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780

    Article  PubMed  Google Scholar 

  19. Hofmann JJ, Iruela-Arispe ML (2007) Notch signaling in blood vessels: who is talking to whom about what? Circ Res 100(11):1556–1568. https://doi.org/10.1161/01.RES.0000266408.42939.e4

    Article  CAS  PubMed  Google Scholar 

  20. Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A, Eichmann A (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A 104(9):3225–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rooke J, Pan D, Xu T, Rubin GM (1996) KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 273(5279):1227–1230

    Article  CAS  PubMed  Google Scholar 

  22. Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T, Lena Illert A, von Figura K, Saftig P (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11(21):2615–2624

    Article  CAS  PubMed  Google Scholar 

  23. Pan D, Rubin J (1997) KUZBANIAN controls proteolytic processing of NOTCH and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90:271–280

    Article  CAS  PubMed  Google Scholar 

  24. Glomski K, Monette S, Manova K, De Strooper B, Saftig P, Blobel CP (2011) Deletion of Adam10 in endothelial cells leads to defects in organ-specific vascular structures. Blood 118(4):1163–1174. https://doi.org/10.1182/blood-2011-04-348557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alabi RO, Glomski K, Haxaire C, Weskamp G, Monette S, Blobel CP (2016) ADAM10-Dependent Signaling Through Notch1 and Notch4 Controls Development of Organ-Specific Vascular Beds. Circ Res 119(4):519–531. https://doi.org/10.1161/CIRCRESAHA.115.307738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abrahamsohn PA (1983) Ultrastructural study of the mouse antimesometrial decidua. Anat Embryol (Berl) 166(2):263–274. https://doi.org/10.1007/bf00305087

    Article  CAS  Google Scholar 

  27. Finn CA, Hinchliffe JR (1964) Reaction of the Mouse Uterus during Implantation and Deciduoma Formation as Demonstrated by Changes in the Distribution of Alkaline Phosphatase. J Reprod Fertil 8:331–338. https://doi.org/10.1530/jrf.0.0080331

    Article  CAS  PubMed  Google Scholar 

  28. Zhao R, Wang A, Hall KC, Otero M, Weskamp G, Zhao B, Hill D, Goldring MB, Glomski K, Blobel CP (2014) Lack of ADAM10 in endothelial cells affects osteoclasts at the chondro-osseus junction. J Orthop Res 32(2):224–230. https://doi.org/10.1002/jor.22492

    Article  CAS  PubMed  Google Scholar 

  29. Farber G, Parks MM, Guahmich NL, Zhang Y, Monette S, Blanchard SC, Di Lorenzo A, Blobel CP (2019) ADAM10 controls the differentiation of the coronary arterial endothelium. Angiogenesis 22(2):237–250. https://doi.org/10.1007/s10456-018-9653-2

    Article  CAS  PubMed  Google Scholar 

  30. dela Paz NG, D'Amore PA (2009) Arterial versus venous endothelial cells. Cell Tissue Res 335(1):5–16. https://doi.org/10.1007/s00441-008-0706-5

    Article  PubMed  Google Scholar 

  31. Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492):323–328. https://doi.org/10.1038/nature13145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuhn A, Brachtendorf G, Kurth F, Sonntag M, Samulowitz U, Metze D, Vestweber D (2002) Expression of endomucin, a novel endothelial sialomucin, in normal and diseased human skin. J Invest Dermatol 119(6):1388–1393. https://doi.org/10.1046/j.1523-1747.2002.19647.x

    Article  CAS  PubMed  Google Scholar 

  33. Erlebacher A (2013) Immunology of the maternal-fetal interface. Annu Rev Immunol 31:387–411. https://doi.org/10.1146/annurev-immunol-032712-100003

    Article  CAS  PubMed  Google Scholar 

  34. Zhao Q, Eichten A, Parveen A, Adler C, Huang Y, Wang W, Ding Y, Adler A, Nevins T, Ni M, Wei Y, Thurston G (2018) Single-Cell Transcriptome Analyses Reveal Endothelial Cell Heterogeneity in Tumors and Changes following Antiangiogenic Treatment. Cancer Res 78(9):2370–2382. https://doi.org/10.1158/0008-5472.CAN-17-2728

    Article  CAS  PubMed  Google Scholar 

  35. Lu Q, Xie Z, Yan C, Ding Y, Ma Z, Wu S, Qiu Y, Cossette SM, Bordas M, Ramchandran R, Zou MH (2018) SNRK (Sucrose Nonfermenting 1-Related Kinase) Promotes Angiogenesis In Vivo. Arterioscler Thromb Vasc Biol 38(2):373–385. https://doi.org/10.1161/ATVBAHA.117.309834

    Article  CAS  PubMed  Google Scholar 

  36. Suchting S, Heal P, Tahtis K, Stewart LM, Bicknell R (2005) Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. FASEB J 19(1):121–123. https://doi.org/10.1096/fj.04-1991fje

    Article  CAS  PubMed  Google Scholar 

  37. Bedell VM, Yeo SY, Park KW, Chung J, Seth P, Shivalingappa V, Zhao J, Obara T, Sukhatme VP, Drummond IA, Li DY, Ramchandran R (2005) roundabout4 is essential for angiogenesis in vivo. Proc Natl Acad Sci U S A 102(18):6373–6378. https://doi.org/10.1073/pnas.0408318102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu Z, Yan S, Wang J, Xu Y, Wang Y, Zhang S, Xu X, Yang Q, Zeng X, Zhou Y, Gu X, Lu S, Fu Z, Fulton DJ, Weintraub NL, Caldwell RB, Zhang W, Wu C, Liu XL, Chen JF, Ahmad A, Kaddour-Djebbar I, Al-Shabrawey M, Li Q, Jiang X, Sun Y, Sodhi A, Smith L, Hong M, Huo Y (2017) Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nat Commun 8(1):584. https://doi.org/10.1038/s41467-017-00551-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kimber SJ (2005) Leukaemia inhibitory factor in implantation and uterine biology. Reproduction 130(2):131–145. https://doi.org/10.1530/rep.1.00304

    Article  CAS  PubMed  Google Scholar 

  40. Gonzalez G, Mehra S, Wang Y, Akiyama H, Behringer RR (2016) Sox9 overexpression in uterine epithelia induces endometrial gland hyperplasia. Differentiation 92(4):204–215. https://doi.org/10.1016/j.diff.2016.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reardon SN, King ML, MacLean JA 2nd, Mann JL, DeMayo FJ, Lydon JP, Hayashi K (2012) CDH1 is essential for endometrial differentiation, gland development, and adult function in the mouse uterus. Biol Reprod 86(5):141–110. https://doi.org/10.1095/biolreprod.112.098871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nallasamy S, Li Q, Bagchi MK, Bagchi IC (2012) Msx homeobox genes critically regulate embryo implantation by controlling paracrine signaling between uterine stroma and epithelium. PLoS Genet 8(2):e1002500. https://doi.org/10.1371/journal.pgen.1002500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Monsivais D, Clementi C, Peng J, Fullerton PT Jr, Prunskaite-Hyyrylainen R, Vainio SJ, Matzuk MM (2017) BMP7 Induces Uterine Receptivity and Blastocyst Attachment. Endocrinology 158(4):979–992. https://doi.org/10.1210/en.2016-1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meseguer M, Pellicer A, Simon C (1998) MUC1 and endometrial receptivity. Mol Hum Reprod 4(12):1089–1098. https://doi.org/10.1093/molehr/4.12.1089

    Article  CAS  PubMed  Google Scholar 

  45. Roby KF, Deb S, Gibori G, Szpirer C, Levan G, Kwok SC, Soares MJ (1993) Decidual prolactin-related protein Identification, molecular cloning, and characterization. J Biol Chem 268(5):3136–3142

    CAS  PubMed  Google Scholar 

  46. Peng S, Li J, Miao C, Jia L, Hu Z, Zhao P, Li J, Zhang Y, Chen Q, Duan E (2008) Dickkopf-1 secreted by decidual cells promotes trophoblast cell invasion during murine placentation. Reproduction 135(3):367–375. https://doi.org/10.1530/REP-07-0191

    Article  CAS  PubMed  Google Scholar 

  47. Screen M, Dean W, Cross JC, Hemberger M (2008) Cathepsin proteases have distinct roles in trophoblast function and vascular remodelling. Development 135(19):3311–3320. https://doi.org/10.1242/dev.025627

    Article  CAS  PubMed  Google Scholar 

  48. Kashiwagi A, DiGirolamo CM, Kanda Y, Niikura Y, Esmon CT, Hansen TR, Shioda T, Pru JK (2007) The postimplantation embryo differentially regulates endometrial gene expression and decidualization. Endocrinology 148(9):4173–4184. https://doi.org/10.1210/en.2007-0268

    Article  CAS  PubMed  Google Scholar 

  49. Simmons DG, Rawn S, Davies A, Hughes M, Cross JC (2008) Spatial and temporal expression of the 23 murine Prolactin/Placental Lactogen-related genes is not associated with their position in the locus. BMC Genomics 9:352. https://doi.org/10.1186/1471-2164-9-352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kidoya H, Takakura N (2012) Biology of the apelin-APJ axis in vascular formation. J Biochem 152(2):125–131. https://doi.org/10.1093/jb/mvs071

    Article  CAS  PubMed  Google Scholar 

  51. Farber G, Hurtado R, Loh S, Monette S, Mtui J, Kopan R, Quaggin S, Meyer-Schwesinger C, Herzlinger D, Scott RP, Blobel CP (2018) Glomerular endothelial cell maturation depends on ADAM10, a key regulator of Notch signaling. Angiogenesis 21(2):335–347. https://doi.org/10.1007/s10456-018-9599-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Son Y, Kwon SM, Cho JY (2019) CD276 (B7–H3) Maintains Proliferation and Regulates Differentiation in Angiogenic Function in Late Endothelial Progenitor Cells. Stem Cells 37(3):382–394. https://doi.org/10.1002/stem.2944

    Article  CAS  PubMed  Google Scholar 

  53. Xu R, Chen W, Zhang Z, Qiu Y, Wang Y, Zhang B, Lu W (2018) Integrated data analysis identifies potential inducers and pathways during the endothelial differentiation of bone-marrow stromal cells by DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine. Gene 657:9–18. https://doi.org/10.1016/j.gene.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  54. Tepekoy F, Akkoyunlu G, Demir R (2015) The role of Wnt signaling members in the uterus and embryo during pre-implantation and implantation. J Assist Reprod Genet 32(3):337–346. https://doi.org/10.1007/s10815-014-0409-7

    Article  PubMed  Google Scholar 

  55. Goad J, Ko YA, Kumar M, Syed SM, Tanwar PS (2017) Differential Wnt signaling activity limits epithelial gland development to the anti-mesometrial side of the mouse uterus. Dev Biol 423(2):138–151. https://doi.org/10.1016/j.ydbio.2017.01.015

    Article  CAS  PubMed  Google Scholar 

  56. Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR (2013) Physiological and molecular determinants of embryo implantation. Mol Aspects Med 34(5):939–980. https://doi.org/10.1016/j.mam.2012.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kwon J, Jeong SM, Choi I, Kim NH (2016) ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development. PLoS ONE 11(4):e0152921. https://doi.org/10.1371/journal.pone.0152921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mahata SK, Corti A (2019) Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation. Ann N Y Acad Sci 1455(1):34–58. https://doi.org/10.1111/nyas.14249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ali M, Buhimschi I, Chwalisz K, Garfield RE (1997) Changes in expression of the nitric oxide synthase isoforms in rat uterus and cervix during pregnancy and parturition. Mol Hum Reprod 3(11):995–1003. https://doi.org/10.1093/molehr/3.11.995

    Article  CAS  PubMed  Google Scholar 

  60. Cameron IT, Campbell S (1998) Nitric oxide in the endometrium. Hum Reprod Update 4(5):565–569. https://doi.org/10.1093/humupd/4.5.565

    Article  CAS  PubMed  Google Scholar 

  61. Burnett TG, Tash JS, Hunt JS (2002) Investigation of the role of nitric oxide synthase 2 in pregnancy using mutant mice. Reproduction 124(1):49–57. https://doi.org/10.1530/rep.0.1240049

    Article  CAS  PubMed  Google Scholar 

  62. Heyward CY, Sones JL, Lob HE, Yuen LC, Abbott KE, Huang W, Begun ZR, Butler SD, August A, Leifer CA, Davisson RL (2017) The decidua of preeclamptic-like BPH/5 mice exhibits an exaggerated inflammatory response during early pregnancy. J Reprod Immunol 120:27–33. https://doi.org/10.1016/j.jri.2017.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Plaks V, Birnberg T, Berkutzki T, Sela S, BenYashar A, Kalchenko V, Mor G, Keshet E, Dekel N, Neeman M, Jung S (2008) Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest 118(12):3954–3965. https://doi.org/10.1172/JCI36682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sapra KJ, Joseph KS, Galea S, Bates LM, Louis GM, Ananth CV (2017) Signs and Symptoms of Early Pregnancy Loss. Reprod Sci 24(4):502–513. https://doi.org/10.1177/1933719116654994

    Article  PubMed  Google Scholar 

  65. Salker M, Teklenburg G, Molokhia M, Lavery S, Trew G, Aojanepong T, Mardon HJ, Lokugamage AU, Rai R, Landles C, Roelen BA, Quenby S, Kuijk EW, Kavelaars A, Heijnen CJ, Regan L, Macklon NS, Brosens JJ (2010) Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS ONE 5(4):e10287. https://doi.org/10.1371/journal.pone.0010287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230(2):230–242

    Article  CAS  PubMed  Google Scholar 

  67. Weskamp G, Mendelson K, Swendeman S, Le Gall S, Ma Y, Lyman S, Hinoki A, Eguchi S, Guaiquil V, Horiuchi K, Blobel CP (2010) Pathological Neovascularization Is Reduced by Inactivation of ADAM17 in Endothelial Cells but Not in Pericytes. Circ Res 106(5):932–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Allen E (1922) The oestrous cycle in the mouse. American J of Anatomy 30:297–371

    Article  Google Scholar 

  69. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ziemann M, Kaspi A, El-Osta A (2019) Digital expression explorer 2 a repository of uniformly processed RNA sequencing data. Gigascience. https://doi.org/10.1093/gigascience/giz022

    Article  PubMed  PubMed Central  Google Scholar 

  71. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Laurie Lacko, Orla O’Shea, Dr. Tania Panellini, Dr. Kat Hadjantonakis, Dr. Gisela Weskamp and Dr. Dragos Dasoveanu for help, advice and insightful suggestions during the course of this project. The Weill Cornell Genomics core performed the RNA-seq analysis presented here. This study was funded in part by NIH R01 GM64750 and NIH R35 GM134907 to C. Blobel and by NIH R01 HL082098 and the March of Dimes Research Foundation (Research Grant #6-FY14-411) to H. Stuhlmann. G. Farber was funded by American Heart Association Predoctoral Fellowship (#17PRE33380001). The measurements of serum hormone levels were performed by The University of Virginia Center for Research in Reproduction Ligand Assay and Analysis Core which is supported by the Eunice Kennedy Shriver NICHD/NIH (NCTRI) Grant P50-HD28934.

Author information

Authors and Affiliations

Authors

Contributions

NLG, GF and CB designed the experiments and prepared the manuscript. NLG harvested all tissues, maintained the mouse colony, performed immunofluorescence experiments and histopathology analysis. EK assisted with the histopathology. NLG and DJ prepared the samples for RNA sequencing and DR and DM helped with the analysis of the RNA-seq data. DD and SS performed the artificial decidualization assays and provided valuable advice and input. HS provided guidance and intellectual input throughout the project. All authors contributed to the editing of the manuscript.

Corresponding author

Correspondence to Carl P. Blobel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2916 kb)

Supplementary file2 (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lustgarten Guahmich, N., Farber, G., Shafiei, S. et al. Endothelial deletion of ADAM10, a key regulator of Notch signaling, causes impaired decidualization and reduced fertility in female mice. Angiogenesis 23, 443–458 (2020). https://doi.org/10.1007/s10456-020-09723-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-020-09723-z

Keywords

Navigation