Skip to main content
Log in

Free fatty acid receptor 4 activation protects against choroidal neovascularization in mice

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

To examine whether free fatty acid receptor 4 (FFAR4) activation can protect against choroidal neovascularization (CNV), which is a common cause of blindness, and to elucidate the mechanism underlying the inhibition, we used the mouse model of laser-induced CNV to mimic angiogenic aspects of age-related macular degeneration (AMD). Laser-induced CNV was compared between groups treated with an FFAR4 agonist or vehicle, and between FFAR4 wild-type (Ffar4+/+) and knock out (Ffar4−/−) mice on a C57BL/6J/6N background. The ex vivo choroid-sprouting assay, including primary retinal pigment epithelium (RPE) and choroid, without retina was used to investigate whether FFAR4 affects choroidal angiogenesis. Western blotting for pNF-ĸB/NF-ĸB and qRT-PCR for Il-6, Il-1β, Tnf-α, Vegf, and Nf-ĸb were used to examine the influence of FFAR4 on inflammation, known to influence CNV. RPE isolated from Ffar4+/+ and Ffar4−/− mice were used to assess RPE contribution to inflammation. The FFAR4 agonist suppressed laser-induced CNV in C57BL/6J mice, and CNV increased in Ffar4−/− compared to Ffar4+/+ mice. We showed that the FFAR4 agonist acted through the FFAR4 receptor. The FFAR4 agonist suppressed mRNA expression of inflammation markers (Il-6, Il-1β) via the NF-ĸB pathway in the retina, choroid, RPE complex. The FFAR4 agonist suppressed neovascularization in the choroid-sprouting ex vivo assay and FFAR4 deficiency exacerbated sprouting. Inflammation markers were increased in primary RPE cells of Ffar4−/− mice compared with Ffar4+/+ RPE. In this mouse model, the FFAR4 agonist suppressed CNV, suggesting FFAR4 to be a new molecular target to reduce pathological angiogenesis in CNV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Friedman DS, Ocolmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT, Nemesure B, Mitchell P, Kempen J, Eye Diseases Prevalence Research G (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572. https://doi.org/10.1001/archopht.122.4.564

    Article  PubMed  Google Scholar 

  2. de Jong PT (2006) Age-related macular degeneration. N Engl J Med 355(14):1474–1485. https://doi.org/10.1056/NEJMra062326

    Article  PubMed  Google Scholar 

  3. Fintak DR, Shah GK, Blinder KJ, Regillo CD, Pollack J, Heier JS, Hollands H, Sharma S (2008) Incidence of endophthalmitis related to intravitreal injection of bevacizumab and ranibizumab. Retina 28(10):1395–1399. https://doi.org/10.1097/IAE.0b013e3181884fd2

    Article  PubMed  Google Scholar 

  4. Rasmussen A, Bloch SB, Fuchs J, Hansen LH, Larsen M, LaCour M, Lund-Andersen H, Sander B (2013) A 4-year longitudinal study of 555 patients treated with ranibizumab for neovascular age-related macular degeneration. Ophthalmology 120(12):2630–2636. https://doi.org/10.1016/j.ophtha.2013.05.018

    Article  PubMed  Google Scholar 

  5. Grunwald JE, Daniel E, Huang J, Ying GS, Maguire MG, Toth CA, Jaffe GJ, Fine SL, Blodi B, Klein ML, Martin AA, Hagstrom SA, Martin DF, Group CR (2014) Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121(1):150–161. https://doi.org/10.1016/j.ophtha.2013.08.015

    Article  PubMed  Google Scholar 

  6. Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2(2):e106–116. https://doi.org/10.1016/S2214-109X(13)70145-1

    Article  PubMed  Google Scholar 

  7. Lambert V, Lecomte J, Hansen S, Blacher S, Gonzalez ML, Struman I, Sounni NE, Rozet E, de Tullio P, Foidart JM, Rakic JM, Noel A (2013) Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat Protoc 8(11):2197–2211. https://doi.org/10.1038/nprot.2013.135

    Article  CAS  PubMed  Google Scholar 

  8. Ryan SJ (1979) The development of an experimental model of subretinal neovascularization in disciform macular degeneration. Trans Am Ophthalmol Soc 77:707–745

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gong Y, Li J, Sun Y, Fu Z, Liu CH, Evans L, Tian K, Saba N, Fredrick T, Morss P, Chen J, Smith LE (2015) Optimization of an image-guided laser-induced choroidal neovascularization model in mice. PLoS ONE 10(7):e0132643. https://doi.org/10.1371/journal.pone.0132643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saishin Y, Saishin Y, Takahashi K, Lima e Silva R, Hylton D, Rudge JS, Wiegand SJ, Campochiaro PA (2003) VEGF-TRAP(R1R2) suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J Cell Physiol 195(2):241–248. https://doi.org/10.1002/jcp.10246

    Article  CAS  PubMed  Google Scholar 

  11. Noel A, Jost M, Lambert V, Lecomte J, Rakic JM (2007) Anti-angiogenic therapy of exudative age-related macular degeneration: current progress and emerging concepts. Trends Mol Med 13(8):345–352. https://doi.org/10.1016/j.molmed.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  12. Fu Z, Chen CT, Cagnone G, Heckel E, Sun Y, Cakir B, Tomita Y, Huang S, Li Q, Britton W, Cho SS, Kern TS, Hellstrom A, Joyal JS, Smith LE (2019) Dyslipidemia in retinal metabolic disorders. EMBO Mol Med 11(10):e10473. https://doi.org/10.15252/emmm.201910473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yasukawa T, Wiedemann P, Hoffmann S, Kacza J, Eichler W, Wang YS, Nishiwaki A, Seeger J, Ogura Y (2007) Glycoxidized particles mimic lipofuscin accumulation in aging eyes: a new age-related macular degeneration model in rabbits. Graefes Arch Clin Exp Ophthalmol 245(10):1475–1485. https://doi.org/10.1007/s00417-007-0571-z

    Article  CAS  PubMed  Google Scholar 

  14. Yasukawa T (2009) Inflammation in age related macular degeneration: pathological or physiological? Expert Rev Ophthalmol 4(2):107–112

    Article  Google Scholar 

  15. Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A, Hong S, Pravda EA, Majchrzak S, Carper D, Hellstrom A, Kang JX, Chew EY, Salem N Jr, Serhan CN, Smith LEH (2007) Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 13(7):868–873. https://doi.org/10.1038/nm1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joyal JS, Sun Y, Gantner ML, Shao Z, Evans LP, Saba N, Fredrick T, Burnim S, Kim JS, Patel G, Juan AM, Hurst CG, Hatton CJ, Cui Z, Pierce KA, Bherer P, Aguilar E, Powner MB, Vevis K, Boisvert M, Fu Z, Levy E, Fruttiger M, Packard A, Rezende FA, Maranda B, Sapieha P, Chen J, Friedlander M, Clish CB, Smith LE (2016) Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1. Nat Med 22(4):439–445. https://doi.org/10.1038/nm.4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ulven T, Christiansen E (2015) Dietary fatty acids and their potential for controlling metabolic diseases through activation of FFA4/GPR120. Annu Rev Nutr 35:239–263. https://doi.org/10.1146/annurev-nutr-071714-034410

    Article  CAS  PubMed  Google Scholar 

  18. Datilo MN, Sant'Ana MR, Formigari GP, Rodrigues PB, de Moura LP, da Silva ASR, Ropelle ER, Pauli JR, Cintra DE (2018) Omega-3 from flaxseed oil protects obese mice against diabetic retinopathy through GPR120 receptor. Sci Rep 8(1):14318. https://doi.org/10.1038/s41598-018-32553-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ichimura A, Hirasawa A, Poulain-Godefroy O, Bonnefond A, Hara T, Yengo L, Kimura I, Leloire A, Liu N, Iida K, Choquet H, Besnard P, Lecoeur C, Vivequin S, Ayukawa K, Takeuchi M, Ozawa K, Tauber M, Maffeis C, Morandi A, Buzzetti R, Elliott P, Pouta A, Jarvelin MR, Korner A, Kiess W, Pigeyre M, Caiazzo R, Van Hul W, Van Gaal L, Horber F, Balkau B, Levy-Marchal C, Rouskas K, Kouvatsi A, Hebebrand J, Hinney A, Scherag A, Pattou F, Meyre D, Koshimizu TA, Wolowczuk I, Tsujimoto G, Froguel P (2012) Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483(7389):350–354. https://doi.org/10.1038/nature10798

    Article  CAS  PubMed  Google Scholar 

  20. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698. https://doi.org/10.1016/j.cell.2010.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Janssen S, Laermans J, Iwakura H, Tack J, Depoortere I (2012) Sensing of fatty acids for octanoylation of ghrelin involves a gustatory G-protein. PLoS ONE 7(6):e40168. https://doi.org/10.1371/journal.pone.0040168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oh DY, Walenta E, Akiyama TE, Lagakos WS, Lackey D, Pessentheiner AR, Sasik R, Hah N, Chi TJ, Cox JM, Powels MA, Di Salvo J, Sinz C, Watkins SM, Armando AM, Chung H, Evans RM, Quehenberger O, McNelis J, Bogner-Strauss JG, Olefsky JM (2014) A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat Med 20(8):942–947. https://doi.org/10.1038/nm.3614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fu Z, Liegl R, Wang Z, Gong Y, Liu CH, Sun Y, Cakir B, Burnim SB, Meng SS, Lofqvist C, SanGiovanni JP, Hellstrom A, Smith LEH (2017) Adiponectin mediates dietary omega-3 long-chain polyunsaturated fatty acid protection against choroidal neovascularization in mice. Invest Ophthalmol Vis Sci 58(10):3862–3870. https://doi.org/10.1167/iovs.17-21796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xin-Zhao Wang C, Zhang K, Aredo B, Lu H, Ufret-Vincenty RL (2012) Novel method for the rapid isolation of RPE cells specifically for RNA extraction and analysis. Exp Eye Res 102:1–9. https://doi.org/10.1016/j.exer.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  25. Shao Z, Friedlander M, Hurst CG, Cui Z, Pei DT, Evans LP, Juan AM, Tahiri H, Duhamel F, Chen J, Sapieha P, Chemtob S, Joyal JS, Smith LE (2013) Choroid sprouting assay: an ex vivo model of microvascular angiogenesis. PLoS ONE 8(7):e69552. https://doi.org/10.1371/journal.pone.0069552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garcia-Layana A, Vasquez G, Salinas-Alaman A, Moreno-Montanes J, Recalde S, Fernandez-Robredo P (2009) Development of laser-induced choroidal neovascularization in rats after retinal damage by sodium iodate injection. Ophthal Res 42(4):205–212. https://doi.org/10.1159/000232946

    Article  Google Scholar 

  27. Moniri NH (2016) Free-fatty acid receptor-4 (GPR120): Cellular and molecular function and its role in metabolic disorders. Biochem Pharmacol 110–111:1–15. https://doi.org/10.1016/j.bcp.2016.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Talukdar S, Olefsky JM, Osborn O (2011) Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends Pharmacol Sci 32(9):543–550. https://doi.org/10.1016/j.tips.2011.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Williams-Bey Y, Boularan C, Vural A, Huang NN, Hwang IY, Shan-Shi C, Kehrl JH (2014) Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-kappaB activation and enhancing autophagy. PLoS ONE 9(6):e97957. https://doi.org/10.1371/journal.pone.0097957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li X, Yu Y, Funk CD (2013) Cyclooxygenase-2 induction in macrophages is modulated by docosahexaenoic acid via interactions with free fatty acid receptor 4 (FFA4). FASEB J 27(12):4987–4997. https://doi.org/10.1096/fj.13-235333

    Article  CAS  PubMed  Google Scholar 

  31. Oh H, Takagi H, Takagi C, Suzuma K, Otani A, Ishida K, Matsumura M, Ogura Y, Honda Y (1999) The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci 40(9):1891–1898

    CAS  PubMed  Google Scholar 

  32. Lavalette S, Raoul W, Houssier M, Camelo S, Levy O, Calippe B, Jonet L, Behar-Cohen F, Chemtob S, Guillonneau X, Combadiere C, Sennlaub F (2011) Interleukin-1beta inhibition prevents choroidal neovascularization and does not exacerbate photoreceptor degeneration. Am J Pathol 178(5):2416–2423. https://doi.org/10.1016/j.ajpath.2011.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roh MI, Kim HS, Song JH, Lim JB, Koh HJ, Kwon OW (2009) Concentration of cytokines in the aqueous humor of patients with naive, recurrent and regressed CNV associated with amd after bevacizumab treatment. Retina 29(4):523–529. https://doi.org/10.1097/IAE.0b013e318195cb15

    Article  PubMed  Google Scholar 

  34. Miao H, Tao Y, Li XX (2012) Inflammatory cytokines in aqueous humor of patients with choroidal neovascularization. Mol Vis 18:574–580

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Izumi-Nagai K, Nagai N, Ozawa Y, Mihara M, Ohsugi Y, Kurihara T, Koto T, Satofuka S, Inoue M, Tsubota K, Okano H, Oike Y, Ishida S (2007) Interleukin-6 receptor-mediated activation of signal transducer and activator of transcription-3 (STAT3) promotes choroidal neovascularization. Am J Pathol 170(6):2149–2158. https://doi.org/10.2353/ajpath.2007.061018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang J, Xue M, Zhang J, Yu H, Gu Y, Du M, Ye W, Wan B, Jin M, Zhang Y (2019) Protective role of GPR120 in the maintenance of pregnancy by promoting decidualization via regulation of glucose metabolism. EBioMedicine 39:540–551. https://doi.org/10.1016/j.ebiom.2018.12.019

    Article  PubMed  Google Scholar 

  37. Schilperoort M, van Dam AD, Hoeke G, Shabalina IG, Okolo A, Hanyaloglu AC, Dib LH, Mol IM, Caengprasath N, Chan YW, Damak S, Miller AR, Coskun T, Shimpukade B, Ulven T, Kooijman S, Rensen PC, Christian M (2018) The GPR120 agonist TUG-891 promotes metabolic health by stimulating mitochondrial respiration in brown fat. EMBO Mol Med. https://doi.org/10.15252/emmm.201708047

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nakamoto K, Tokuyama S (2019) Involvement of the free fatty acid receptor GPR120/FFAR4 in the development of nonalcoholic steatohepatitis. Yakugaku Zasshi 139(9):1169–1175. https://doi.org/10.1248/yakushi.19-00011-4

    Article  CAS  PubMed  Google Scholar 

  39. Nobili V, Carpino G, Alisi A, De Vito R, Franchitto A, Alpini G, Onori P, Gaudio E (2014) Role of docosahexaenoic acid treatment in improving liver histology in pediatric nonalcoholic fatty liver disease. PLoS ONE 9(2):e88005. https://doi.org/10.1371/journal.pone.0088005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Raptis DA, Limani P, Jang JH, Ungethum U, Tschuor C, Graf R, Humar B, Clavien PA (2014) GPR120 on Kupffer cells mediates hepatoprotective effects of omega3-fatty acids. J Hepatol 60(3):625–632. https://doi.org/10.1016/j.jhep.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  41. Hudson BD, Shimpukade B, Mackenzie AE, Butcher AJ, Pediani JD, Christiansen E, Heathcote H, Tobin AB, Ulven T, Milligan G (2013) The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol Pharmacol 84(5):710–725. https://doi.org/10.1124/mol.113.087783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by Grants Manpei Suzuki Diabetic Foundation (YT), The German Research Foundation (DFG; to BC [CA1940/1-1]), Boston Children's Hospital OFD/BTREC/CTREC Faculty Career Development Grant, Boston Children's Hospital Ophthalmology Foundation, Little Giraffe Foundation, BCH Manton Center Fellowship and Blind Children’s Center (ZF), NIH/NEI (Grant Nos. R01EY030140, R01EY029238), Bright Focus Foundation, Boston Children's Hospital Ophthalmology Foundation (YS), The Wallenberg Clinical Scholars (AH), The Vascular Biology Program and the Boston Children’s Hospital Surgery Foundation (MP), and NIH R24EY024868, EY017017, R01EY01717-13S1, EY030904-01, BCH IDDRC (Grant No. 1U54HD090255), Massachusetts Lions Eye Foundation (LEHS).

Author information

Authors and Affiliations

Authors

Contributions

YT, BC, ZF, YS, MP, AH, ST, LEHS. designed all experiments; YT, BC, ZF, CHL, SH, SC, WB, performed the experiments; YT analyzed the data; YT, BC and LEHS wrote the manuscript.

Corresponding author

Correspondence to Lois E. H. Smith.

Ethics declarations

Conflict of interest

The authors declare that there is no duality of interest associated with this manuscript. Saswata Talukdar is an employee and stockholder of Merck &Co.

Ethical approval

All animal studies adhered to the Association for Research in Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research and were approved by Institutional Animal Care and Use Committee at Boston Children’s Hospital (ARCH Protocol Number 19-04-3913R).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomita, Y., Cakir, B., Liu, CH. et al. Free fatty acid receptor 4 activation protects against choroidal neovascularization in mice. Angiogenesis 23, 385–394 (2020). https://doi.org/10.1007/s10456-020-09717-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-020-09717-x

Keywords

Navigation