Cancer stem cells contribute to angiogenesis and lymphangiogenesis in serous adenocarcinoma of the ovary

Abstract

The origin of blood and lymphatic vessels in high-grade serous adenocarcinoma of ovary (HGSOC) is uncertain. We evaluated the potential of cancer stem cells (CSCs) in HGSOC to contribute to their formation. Using spheroids as an in vitro model for CSCs, we have evaluated their role in primary malignant cells (PMCs) in ascites from previously untreated patients with HGSOC and cell lines. Spheroids from PMCs grown under specific conditions showed significantly higher expression of endothelial, pericyte and lymphatic endothelial markers. These endothelial and lymphatic cells formed tube-like structures, showed uptake of Dil-ac-LDL and expressed endothelial nitric oxide synthase confirming their endothelial phenotype. Electron microscopy demonstrated classical Weibel–Palade bodies in differentiated cells. Genetically, CSCs and the differentiated cells had a similar identity. Lineage tracking using green fluorescent protein transfected cancer cells in nude mice confirmed that spheroids grown in stem cell conditions can give rise to all three cells. Bevacizumab, a monoclonal antibody that targets vascular endothelial growth factor inhibited the differentiation of spheroids to endothelial cells in vitro. These results suggest that CSCs contribute to angiogenesis and lymphangiogenesis in serous adenocarcinoma of the ovary, which can be inhibited.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26:489–502

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Krishna Priya S, Nagare RP, Sneha VS et al (2016) Tumour angiogenesis: origin of blood vessels. Int J Cancer 139:729–735

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10:717–728

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Ricci-Vitiani L, Pallini R, Biffoni M et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Wang R, Chadalavada K, Wilshire J et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Cheng L, Huang Z, Zhou W et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153:139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bussolati B, Grange C, Sapino A, Camussi G (2009) Endothelial cell differentiation of human breast tumour stem/progenitor cells. J Cell Mol Med 13:309–319

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Lai C-Y, Schwartz BE, Hsu M-Y (2012) CD133+ melanoma subpopulations contribute to perivascular niche morphogenesis and tumorigenicity through vasculogenic mimicry. Cancer Res 72:5111–5118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Sundar SS, Ganesan TS (2007) Role of lymphangiogenesis in cancer. J Clin Oncol 25:4298–4307

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Nagare RP, Sneha S, Priya SK, Ganesan TS (2017) Cancer stem cells—are surface markers alone sufficient? Curr Stem Cell Res Ther 12:37–44

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Matsuda K, Ohga N, Hida Y et al (2010) Isolated tumor endothelial cells maintain specific character during long-term culture. Biochem Biophys Res Commun 394:947–954

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Voyta JC, Via DP, Butterfield CE, Zetter BR (1984) Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol 99:2034–2040

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Lamas S, Marsden PA, Li GK et al (1992) Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 89:6348–6352

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    DeCicco-Skinner KL, Henry GH, Cataisson C et al (2014) Endothelial cell tube formation assay for the in vitro study of angiogenesis. J Vis Exp JoVE 91:e51312

    Google Scholar 

  15. 15.

    Weibel ER, Palade GE (1964) New cytoplasmic components in arterial endothelia. J Cell Biol 23:101–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Valentijn KM, Sadler JE, Valentijn JA et al (2011) Functional architecture of Weibel–Palade bodies. Blood 117:5033–5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hirschberg RM, Sachtleben M, Plendl J (2005) Electron microscopy of cultured angiogenic endothelial cells. Microsc Res Technol 67:248–259

    Article  Google Scholar 

  19. 19.

    Au-Yeung G, Lang F, Azar WJ et al (2017) Selective targeting of cyclin E1-amplified high-grade serous ovarian cancer by cyclin-dependent kinase 2 and AKT inhibition. Clin Cancer Res 23:1862–1874

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:1

    Article  CAS  Google Scholar 

  21. 21.

    Kaipainen A, Korhonen J, Mustonen T et al (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92:3566–3570

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312:549–560

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  24. 24.

    Krishna Priya S, Kumar K, Hiran KR et al (2017) Expression of a novel endothelial marker, C-type lectin 14A, in epithelial ovarian cancer and its prognostic significance. Int J Clin Oncol 22:107–117

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Hall M, Gourley C, McNeish I et al (2013) Targeted anti-vascular therapies for ovarian cancer: current evidence. Br J Cancer 108:250–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Liao J, Qian F, Tchabo N et al (2014) Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PLoS ONE 9:e84941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Condello S, Morgan CA, Nagdas S et al (2015) β-Catenin-regulated ALDH1A1 is a target in ovarian cancer spheroids. Oncogene 34:2297–2308

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Alvero AB, Fu H-H, Holmberg J et al (2009) Stem-like ovarian cancer cells can serve as tumor vascular progenitors. Stem Cells 27:2405–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Dictor M, Mebrahtu S, Selg M et al (2007) Lymphatic origin from embryonic stem cells. Cancer Treat Res 135:25–37

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Zhou X-M, Wang D, He H-L et al (2017) Bone marrow derived mesenchymal stem cells involve in the lymphangiogenesis of lung cancer and Jinfukang inhibits the involvement in vivo. J Cancer 8:1786–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Chen S-H, Murphy DA, Lassoued W et al (2008) Activated STAT3 is a mediator and biomarker of VEGF endothelial activation. Cancer Biol Ther 7:1994–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Jiang B-H, Liu L-Z (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102:19–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17:611–625

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Tang S, Xiang T, Huang S et al (2016) Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling. Cancer Lett 376:137–147

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Sood AK, Seftor EA, Fletcher MS et al (2001) Molecular determinants of ovarian cancer plasticity. Am J Pathol 158:1279–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Perren TJ, Swart AM, Pfisterer J et al (2011) A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 365:2484–2496

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Stark D, Nankivell M, Pujade-Lauraine E et al (2013) Standard chemotherapy with or without bevacizumab in advanced ovarian cancer: quality-of-life outcomes from the International Collaboration on Ovarian Neoplasms (ICON7) phase 3 randomised trial. Lancet Oncol 14:236–243

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Burger RA, Brady MF, Bookman MA et al (2011) Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 365:2473–2483

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Yi S, Zeng L, Kuang Y et al (2017) Antiangiogenic drugs used with chemotherapy for patients with recurrent ovarian cancer: a meta-analysis. OncoTargets Ther 10:973–984

    Article  CAS  Google Scholar 

  41. 41.

    Agliano A, Calvo A, Box C (2017) The challenge of targeting cancer stem cells to halt metastasis. Semin Cancer Biol 44:25–42

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Marquardt S, Solanki M, Spitschak A et al (2018) Emerging functional markers for cancer stem cell-based therapies: understanding signaling networks for targeting metastasis. Semin Cancer Biol 53:90–109

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23:1124–1134

    Article  CAS  Google Scholar 

  44. 44.

    Kaipparettu BA, Kuiatse I, Tak-Yee Chan B et al (2008) Novel egg white-based 3-D cell culture system. Biotechniques 45(165–168):170–171

    Google Scholar 

  45. 45.

    Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1598

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Mousseau Y, Mollard S, Qiu H et al (2014) In vitro 3D angiogenesis assay in egg white matrix: comparison to Matrigel, compatibility to various species, and suitability for drug testing. Lab Invest 94:340–349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Department of Biotechnology (DBT), Government of India for funding this project and Indian Council for Medical Research (ICMR) for the Senior Research Fellowship for S.K.P, B.S and R.P.N. We also thank Department of Science and Technology and University Grants Commission for the Research Fellowships to M.P and S.S, respectively. We thank Dr.V.Sridevi and Dr.Ujwala, Cancer Institute for their help in identifying patients with ovarian cancer. We are grateful to the Staff and nurses of Department of Medical Oncology, flow cytometry facility at the Department of Molecular Oncology, Cancer Institute and IIT Madras, Departments of Electron microscopy, Pathology, Epidemiology and Statistics at Cancer Institute for their help. We also thank Dr.Manoj Garg for his suggestions and help for the in vivo experiments.

Funding

Funding were provided by Department of Biotechnology, Ministry of Science and Technology (Grant No. 102/IFD/SAN/890/2016-2017), Indian Council of Medical Research (Grant No. 3/2/2/169/2012-NCD III) and Department of Science and Technology, Ministry of Science and Technology (Grant No. IF40020).

Author information

Affiliations

Authors

Contributions

SKP performed the in vitro experiments, analysed the results, compiled and prepared the manuscript; CS and PM assisted in designing and conducting signalling experiments, database analysis and maintenance of cell lines; SS, SKP and RPN processed primary ascites samples; SB performed transfection experiments; RB performed in vivo experiments; PV analysed the results of electron microscopy; KM and SS evaluated the histopathology staining and TSG designed the study and procured the funding, monitored and provided suggestions during the project and corrected the manuscript.

Corresponding author

Correspondence to Trivadi Sundaram Ganesan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4179 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krishnapriya, S., Sidhanth, C., Manasa, P. et al. Cancer stem cells contribute to angiogenesis and lymphangiogenesis in serous adenocarcinoma of the ovary. Angiogenesis 22, 441–455 (2019). https://doi.org/10.1007/s10456-019-09669-x

Download citation

Keywords

  • Cancer stem cells
  • Endothelial cells
  • Pericytes
  • Lymphangiogenesis
  • Bevacizumab
  • Serous adenocarcinoma of ovary