Skip to main content
Log in

A ribosomal DNA-hosted microRNA regulates zebrafish embryonic angiogenesis

  • Brief Communication
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are single-stranded small non-coding RNAs, generally 18–25 nucleotides in length, that act as repressors of gene expression. miRNAs are encoded by independent genes or processed from a variety of different RNA species. So far, there is no evidence showing that the ribosomal DNA-hosted microRNA is implicated in vertebrate development. Currently, we found a highly expressed small RNA hosted in ribosomal DNA was predicted as a novel miRNA, named miR-ntu1, in zebrafish endothelial cells by deep sequencing analysis. The miRNA was validated by custom-designed Taqman PCR, Northern Blot, and in silico analysis. Furthermore, we demonstrated that miR-ntu1 played a crucial role in zebrafish angiogenesis via modulation of Notch signaling. Our findings provide a notable case that a miRNA hosted in ribosomal DNA is involved in vertebrate development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  2. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. https://doi.org/10.1038/nature02871

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. He S, Su H, Liu C, Skogerbo G, He H, He D, Zhu X, Liu T, Zhao Y, Chen R (2008) MicroRNA-encoding long non-coding RNAs. BMC Genom 9:236. https://doi.org/10.1186/1471-2164-9-236

    Article  CAS  Google Scholar 

  5. Saraiya AA, Wang CC (2008) snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog 4(11):e1000224. https://doi.org/10.1371/journal.ppat.1000224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11(4):441–450. https://doi.org/10.1016/j.devcel.2006.09.009

    Article  CAS  PubMed  Google Scholar 

  7. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9(3):219–230. https://doi.org/10.1038/nrm2347

    Article  CAS  PubMed  Google Scholar 

  8. Hata A (2013) Functions of microRNAs in cardiovascular biology and disease. Annu Rev Physiol 75:69–93. https://doi.org/10.1146/annurev-physiol-030212-183737

    Article  CAS  PubMed  Google Scholar 

  9. Condorelli G, Latronico MV, Cavarretta E (2014) microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol 63(21):2177–2187. https://doi.org/10.1016/j.jacc.2014.01.050

    Article  CAS  PubMed  Google Scholar 

  10. Liu D, Krueger J, Le Noble F (2011) The role of blood flow and microRNAs in blood vessel development. Int J Dev Biol 55(4–5):419–429. https://doi.org/10.1387/ijdb.103220dl

    Article  CAS  PubMed  Google Scholar 

  11. Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469(7330):336–342. https://doi.org/10.1038/nature09783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zentner GE, Saiakhova A, Manaenkov P, Adams MD, Scacheri PC (2011) Integrative genomic analysis of human ribosomal DNA. Nucleic Acids Res 39(12):4949–4960. https://doi.org/10.1093/nar/gkq1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chak LL, Mohammed J, Lai EC, Tucker-Kellogg G, Okamura K (2015) A deeply conserved, noncanonical miRNA hosted by ribosomal DNA. RNA 21(3):375–384. https://doi.org/10.1261/rna.049098.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang X, Ling CC, Li L, Qin Y, Qi J, Liu X, You B, Shi Y, Zhang J, Jiang Q, Xu H, Sun C, You Y, Chai R, Liu D (2016) MicroRNA-10a/10b represses a novel target gene mib1 to regulate angiogenesis. Cardiovasc Res 110(1):140–150. https://doi.org/10.1093/cvr/cvw023

    Article  CAS  PubMed  Google Scholar 

  15. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415. https://doi.org/10.1038/nbt1394

    Article  CAS  PubMed  Google Scholar 

  16. Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40(1):37–52. https://doi.org/10.1093/nar/gkr688

    Article  CAS  PubMed  Google Scholar 

  17. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517. https://doi.org/10.1261/rna.5248604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Phng LK, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16(2):196–208. https://doi.org/10.1016/j.devcel.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  19. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780. https://doi.org/10.1038/nature05571

    Article  CAS  PubMed  Google Scholar 

  20. Leslie JD, Ariza-McNaughton L, Bermange AL, McAdow R, Johnson SL, Lewis J (2007) Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134(5):839–844. https://doi.org/10.1242/dev.003244

    Article  CAS  PubMed  Google Scholar 

  21. Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445(7129):781–784. https://doi.org/10.1038/nature05577

    Article  CAS  PubMed  Google Scholar 

  22. Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, Wiegand SJ (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104(9):3219–3224. https://doi.org/10.1073/pnas.0611206104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hasan SS, Tsaryk R, Lange M, Wisniewski L, Moore JC, Lawson ND, Wojciechowska K, Schnittler H, Siekmann AF (2017) Endothelial Notch signalling limits angiogenesis via control of artery formation. Nat Cell Biol 19(8):928–940. https://doi.org/10.1038/ncb3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha SF, Langen UH, Stehling M, Nagasawa T, Ferrara N, Borggrefe T, Adams RH (2017) Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 19(8):915–927. https://doi.org/10.1038/ncb3555

    Article  CAS  PubMed  Google Scholar 

  25. Itoh M, Kim CH, Palardy G, Oda T, Jiang YJ, Maust D, Yeo SY, Lorick K, Wright GJ, Ariza-McNaughton L, Weissman AM, Lewis J, Chandrasekharappa SC, Chitnis AB (2003) Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev Cell 4(1):67–82

    Article  CAS  PubMed  Google Scholar 

  26. Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128(19):3675–3683

    CAS  PubMed  Google Scholar 

  27. Jensen LD, Cao Z, Nakamura M, Yang Y, Brautigam L, Andersson P, Zhang Y, Wahlberg E, Lanne T, Hosaka K, Cao Y (2012) Opposing effects of circadian clock genes bmal1 and period2 in regulation of VEGF-dependent angiogenesis in developing zebrafish. Cell Rep 2(2):231–241. https://doi.org/10.1016/j.celrep.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  28. Jiang Q, Lagos-Quintana M, Liu D, Shi Y, Helker C, Herzog W, le Noble F (2013) miR-30a regulates endothelial tip cell formation and arteriolar branching. Hypertension 62(3):592–598. https://doi.org/10.1161/HYPERTENSIONAHA.113.01767

    Article  CAS  PubMed  Google Scholar 

  29. Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D, Patient R, Boshoff C (2012) The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood 120(25):5063–5072. https://doi.org/10.1182/blood-2012-04-423004

    Article  CAS  PubMed  Google Scholar 

  30. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500. https://doi.org/10.1038/ng1536

    Article  CAS  PubMed  Google Scholar 

  31. Hon LS, Zhang Z (2007) The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol 8(8):R166. https://doi.org/10.1186/gb-2007-8-8-r166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hassel D, Cheng P, White MP, Ivey KN, Kroll J, Augustin HG, Katus HA, Stainier DY, Srivastava D (2012) MicroRNA-10 regulates the angiogenic behavior of zebrafish and human endothelial cells by promoting vascular endothelial growth factor signaling. Circ Res 111(11):1421–1433. https://doi.org/10.1161/CIRCRESAHA.112.279711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wei H, Zhou B, Zhang F, Tu Y, Hu Y, Zhang B, Zhai Q (2013) Profiling and identification of small rDNA-derived RNAs and their potential biological functions. PLoS ONE 8(2):e56842. https://doi.org/10.1371/journal.pone.0056842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshikawa M, Fujii YR (2016) Human ribosomal RNA-derived resident microRNAs as the transmitter of information upon the cytoplasmic cancer stress. Biomed Res Int 2016:7562085. https://doi.org/10.1155/2016/7562085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Son DJ, Kumar S, Takabe W, Kim CW, Ni CW, Alberts-Grill N, Jang IH, Kim S, Kim W, Won Kang S, Baker AH, Woong Seo J, Ferrara KW, Jo H (2013) The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun 4:3000. https://doi.org/10.1038/ncomms4000

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Zeng A, Han XS, Li G, Li YQ, Shen B, Jing Q (2017) Small RNAome sequencing delineates the small RNA landscape of pluripotent adult stem cells in the planarian Schmidtea mediterranea. Genom Data 14:114–125. https://doi.org/10.1016/j.gdata.2017.10.004

    Article  PubMed  PubMed Central  Google Scholar 

  37. Huang Y, Wang X, Wang X, Xu M, Liu M, Liu D (2013) Nonmuscle myosin II-B (myh10) expression analysis during zebrafish embryonic development. Gene Expr Patterns 13(7):265–270. https://doi.org/10.1016/j.gep.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  38. Xu M, Liu D, Dong Z, Wang X, Wang X, Liu Y, Baas PW, Liu M (2014) Kinesin-12 influences axonal growth during zebrafish neural development. Cytoskeleton 71(10):555–563. https://doi.org/10.1002/cm.21193

    Article  CAS  PubMed  Google Scholar 

  39. Krueger J, Liu D, Scholz K, Zimmer A, Shi Y, Klein C, Siekmann A, Schulte-Merker S, Cudmore M, Ahmed A, le Noble F (2011) Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development 138(10):2111–2120. https://doi.org/10.1242/dev.063933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lv F, Zhu C, Yan X, Wang X, Liu D (2017) Generation of a mef2aa:EGFP transgenic zebrafish line that expresses EGFP in muscle cells. Fish Physiol Biochem 43(1):287–294. https://doi.org/10.1007/s10695-016-0286-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China 81570447, 81870359; Natural Science Foundation from Jiangsu Province 17KJA180008, SWYY-048, and BK20180048.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gangcai Xie or Dong Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 102 KB)

Supplementary material 2 (PDF 3462 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Duan, X., Xu, G. et al. A ribosomal DNA-hosted microRNA regulates zebrafish embryonic angiogenesis. Angiogenesis 22, 211–221 (2019). https://doi.org/10.1007/s10456-019-09663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-019-09663-3

Keywords

Navigation