Skip to main content
Log in

ADAM10 controls the differentiation of the coronary arterial endothelium

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The coronary vasculature is crucial for normal heart function, yet much remains to be learned about its development, especially the maturation of coronary arterial endothelium. Here, we show that endothelial inactivation of ADAM10, a key regulator of Notch signaling, leads to defects in coronary arterial differentiation, as evidenced by dysregulated genes related to Notch signaling and arterial identity. Moreover, transcriptome analysis indicated reduced EGFR signaling in A10ΔEC coronary endothelium. Further analysis revealed that A10ΔEC mice have enlarged dysfunctional hearts with abnormal myocardial compaction, and increased expression of venous and immature endothelium markers. These findings provide the first evidence for a potential role for endothelial ADAM10 in cardioprotective homeostatic EGFR signaling and implicate ADAM10/Notch signaling in coronary arterial cell specification, which is vital for normal heart development and function. The ADAM10/Notch signaling pathway thus emerges as a potential therapeutic target for improving the regenerative capacity and maturation of the coronary vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2017) Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603. https://doi.org/10.1161/CIR.0000000000000485

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen HI, Sharma B, Akerberg BN, Numi HJ, Kivela R, Saharinen P, Aghajanian H, McKay AS, Bogard PE, Chang AH, Jacobs AH, Epstein JA, Stankunas K, Alitalo K, Red-Horse K (2014) The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development 141(23):4500–4512. https://doi.org/10.1242/dev.113639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luttun A, Carmeliet P (2003) De novo vasculogenesis in the heart. Cardiovasc Res 58(2):378–389

    Article  CAS  PubMed  Google Scholar 

  4. Tian X, Hu T, Zhang H, He L, Huang X, Liu Q, Yu W, He L, Yang Z, Zhang Z, Zhong TP, Yang X, Yang Z, Yan Y, Baldini A, Sun Y, Lu J, Schwartz RJ, Evans SM, Gittenberger-de Groot AC, Red-Horse K, Zhou B (2013) Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res 23(9):1075–1090. https://doi.org/10.1038/cr.2013.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tian X, Pu WT, Zhou B (2015) Cellular origin and developmental program of coronary angiogenesis. Circ Res 116(3):515–530. https://doi.org/10.1161/CIRCRESAHA.116.305097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu B, Zhang Z, Lui W, Chen X, Wang Y, Chamberlain AA, Moreno-Rodriguez RA, Markwald RR, O’Rourke BP, Sharp DJ, Zheng D, Lenz J, Baldwin HS, Chang CP, Zhou B (2012) Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151(5):1083–1096. https://doi.org/10.1016/j.cell.2012.10.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Y, Wu B, Lu P, Zhang D, Wu B, Varshney S, Del Monte-Nieto G, Zhuang Z, Charafeddine R, Kramer AH, Sibinga NE, Frangogiannis NG, Kitsis RN, Adams RH, Alitalo K, Sharp DJ, Harvey RP, Stanley P, Zhou B (2017) Uncontrolled angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1. Nat Commun 8(1):578. https://doi.org/10.1038/s41467-017-00654-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Red-Horse K, Ueno H, Weissman IL, Krasnow MA (2010) Coronary arteries form by developmental reprogramming of venous cells. Nature 464(7288):549–553. https://doi.org/10.1038/nature08873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Su T, Stanley G, Sinha R, D’Amato G, Das S, Rhee S, Chang AH, Poduri A, Raftrey B, Dinh TT, Roper WA, Li G, Quinn KE, Caron KM, Wu S, Miquerol L, Butcher EC, Weissman I, Quake S, Red-Horse K (2018) Single-cell analysis of early progenitor cells that build coronary arteries. Nature 559(7714):356–362. https://doi.org/10.1038/s41586-018-0288-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alabi RO, Farber G, Blobel CP (2018) Intriguing roles for endothelial ADAM10/Notch signaling in the development of organ-specific vascular beds. Physiol Rev 98(4):2025–2061. https://doi.org/10.1152/physrev.00029.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Glomski K, Monette S, Manova K, De Strooper B, Saftig P, Blobel CP (2011) Deletion of Adam10 in endothelial cells leads to defects in organ-specific vascular structures. Blood 118(4):1163–1174. https://doi.org/10.1182/blood-2011-04-348557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alabi RO, Glomski K, Haxaire C, Weskamp G, Monette S, Blobel CP (2016) ADAM10-dependent signaling through Notch1 and Notch4 controls development of organ-specific vascular beds. Circ Res 119(4):519–531. https://doi.org/10.1161/CIRCRESAHA.115.307738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL, Gridley T (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14(11):1343–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  14. del Monte G, Casanova JC, Guadix JA, MacGrogan D, Burch JB, Perez-Pomares JM, de la Pompa JL (2011) Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res 108(7):824–836. https://doi.org/10.1161/CIRCRESAHA.110.229062

    Article  CAS  PubMed  Google Scholar 

  15. MacGrogan D, D’Amato G, Travisano S, Martinez-Poveda B, Luxan G, Del Monte-Nieto G, Papoutsi T, Sbroggio M, Bou V, Gomez-Del Arco P, Gomez MJ, Zhou B, Redondo JM, Jimenez-Borreguero LJ, de la Pompa JL (2016) Sequential ligand-dependent Notch signaling activation regulates valve primordium formation and morphogenesis. Circ Res 118(10):1480–1497. https://doi.org/10.1161/CIRCRESAHA.115.308077

    Article  CAS  PubMed  Google Scholar 

  16. D’Amato G, Luxan G, del Monte-Nieto G, Martinez-Poveda B, Torroja C, Walter W, Bochter MS, Benedito R, Cole S, Martinez F, Hadjantonakis AK, Uemura A, Jimenez-Borreguero LJ, de la Pompa JL (2016) Sequential Notch activation regulates ventricular chamber development. Nat Cell Biol 18(1):7–20. https://doi.org/10.1038/ncb3280

    Article  CAS  PubMed  Google Scholar 

  17. Luxan G, D’Amato G, MacGrogan D, de la Pompa JL (2016) Endocardial Notch signaling in cardiac development and disease. Circ Res 118(1):e1–e18. https://doi.org/10.1161/CIRCRESAHA.115.305350

    Article  CAS  PubMed  Google Scholar 

  18. Kim YH, Hu H, Guevara-Gallardo S, Lam MT, Fong SY, Wang RA (2008) Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis. Development 135(22):3755–3764. https://doi.org/10.1242/dev.022475

    Article  CAS  PubMed  Google Scholar 

  19. Copeland JN, Feng Y, Neradugomma NK, Fields PE, Vivian JL (2011) Notch signaling regulates remodeling and vessel diameter in the extraembryonic yolk sac. BMC Dev Biol 11:12. https://doi.org/10.1186/1471-213X-11-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quaife-Ryan GA, Sim CB, Ziemann M, Kaspi A, Rafehi H, Ramialison M, El-Osta A, Hudson JE, Porrello ER (2017) Multicellular transcriptional analysis of mammalian heart regeneration. Circulation 136(12):1123–1139. https://doi.org/10.1161/CIRCULATIONAHA.117.028252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Langen UH, Pitulescu ME, Kim JM, Enriquez-Gasca R, Sivaraj KK, Kusumbe AP, Singh A, Di Russo J, Bixel MG, Zhou B, Sorokin L, Vaquerizas JM, Adams RH (2017) Cell-matrix signals specify bone endothelial cells during developmental osteogenesis. Nat Cell Biol 19(3):189–201. https://doi.org/10.1038/ncb3476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. dela Paz NG, D’Amore PA (2009) Arterial versus venous endothelial cells. Cell Tissue Res 335(1):5–16. https://doi.org/10.1007/s00441-008-0706-5

    Article  PubMed  Google Scholar 

  23. Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yla-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660. https://doi.org/10.1038/nature07083

    Article  CAS  PubMed  Google Scholar 

  24. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92(8):3566–3570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carvajal JA, Germain AM, Huidobro-Toro JP, Weiner CP (2000) Molecular mechanism of cGMP-mediated smooth muscle relaxation. J Cell Physiol 184 (3):409–420. https://doi.org/10.1002/1097-4652(200009)184:3%3C409::AID-JCP16%3E3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  26. Kuhn PH, Colombo AV, Schusser B, Dreymueller D, Wetzel S, Schepers U, Herber J, Ludwig A, Kremmer E, Montag D, Muller U, Schweizer M, Saftig P, Brase S, Lichtenthaler SF (2016) Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. eLife. https://doi.org/10.7554/eLife.12748

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weskamp G, Ford J, Sturgill J, Martin S, Docherty A, Swendeman S, Broadway N, Hartmann D, Saftig P, Umland S, Sehara-Fujisawa A, Black R, Ludwig A, Becherer D, Conrad D, Blobel C (2006) ADAM10 is a principal ‘sheddase’ of the low-affinity immunoglobulin E receptor CD23. Nat Immunol 7:1393–1298

    Article  Google Scholar 

  28. Sahin U, Weskamp G, Zhou HM, Higashiyama S, Peschon JJ, Hartmann D, Saftig P, Blobel CP (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR-ligands. J Cell Biol 164:769–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanderson MP, Erickson SN, Gough PJ, Garton KJ, Wille PT, Raines EW, Dunbar AJ, Dempsey PJ (2005) ADAM10 mediates ectodomain shedding of the betacellulin precursor activated by p-aminophenylmercuric acetate and extracellular calcium influx. J Biol Chem 280(3):1826–1837

    Article  CAS  PubMed  Google Scholar 

  30. Kuhn PH, Wang H, Dislich B, Colombo A, Zeitschel U, Ellwart JW, Kremmer E, Rossner S, Lichtenthaler SF (2010) ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J 29(17):3020–3032. https://doi.org/10.1038/emboj.2010.167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blobel CP (2005) ADAMs: key players in EGFR-signaling, development and disease. Nat Rev Mol Cell Biol 6:32–43

    Article  CAS  PubMed  Google Scholar 

  32. Miller MA, Sullivan RJ, Lauffenburger DA (2017) Molecular pathways: receptor ectodomain shedding in treatment, resistance, and monitoring of cancer. Clin Cancer Res 23(3):623–629. https://doi.org/10.1158/1078-0432.CCR-16-0869

    Article  CAS  PubMed  Google Scholar 

  33. Yang Y, Wang Y, Zeng X, Ma XJ, Zhao Y, Qiao J, Cao B, Li YX, Ji L, Wang YL (2012) Self-control of HGF regulation on human trophoblast cell invasion via enhancing c-Met receptor shedding by ADAM10 and ADAM17. J Clin Endocrinol Metab 97(8):E1390–E1401. https://doi.org/10.1210/jc.2012-1150

    Article  CAS  PubMed  Google Scholar 

  34. Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 3(1):a006569. https://doi.org/10.1101/cshperspect.a006569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M, Adams RH (2009) The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137(6):1124–1135. https://doi.org/10.1016/j.cell.2009.03.025

    Article  CAS  PubMed  Google Scholar 

  36. Luca VC, Kim BC, Ge C, Kakuda S, Wu D, Roein-Peikar M, Haltiwanger RS, Zhu C, Ha T, Garcia KC (2017) Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science 355(6331):1320–1324. https://doi.org/10.1126/science.aaf9739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luca VC, Jude KM, Pierce NW, Nachury MV, Fischer S, Garcia KC (2015) Structural biology. Structural basis for Notch1 engagement of Delta-like 4. Science 347(6224):847–853. https://doi.org/10.1126/science.1261093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao Q, Eichten A, Parveen A, Adler C, Huang Y, Wang W, Ding Y, Adler A, Nevins T, Ni M, Wei Y, Thurston G (2018) Single-cell transcriptome analyses reveal endothelial cell heterogeneity in tumors and changes following antiangiogenic treatment. Cancer Res 78(9):2370–2382. https://doi.org/10.1158/0008-5472.CAN-17-2728

    Article  CAS  PubMed  Google Scholar 

  39. Fang JS, Coon BG, Gillis N, Chen Z, Qiu J, Chittenden TW, Burt JM, Schwartz MA, Hirschi KK (2017) Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun 8(1):2149. https://doi.org/10.1038/s41467-017-01742-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Groot AJ, Vooijs MA (2012) The role of Adams in Notch signaling. Adv Exp Med Biol 727:15–36. https://doi.org/10.1007/978-1-4614-0899-4_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233. https://doi.org/10.1016/j.cell.2009.03.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Z, Yan S, Wang J, Xu Y, Wang Y, Zhang S, Xu X, Yang Q, Zeng X, Zhou Y, Gu X, Lu S, Fu Z, Fulton DJ, Weintraub NL, Caldwell RB, Zhang W, Wu C, Liu XL, Chen JF, Ahmad A, Kaddour-Djebbar I, Al-Shabrawey M, Li Q, Jiang X, Sun Y, Sodhi A, Smith L, Hong M, Huo Y (2017) Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nat Commun 8(1):584. https://doi.org/10.1038/s41467-017-00551-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, Russel WE, Castner BJ, Johnson RS, Fitzner JN, Boyce RW, Nelson N, Kozlosky CJ, Wolfson MF, Rauch CT, Cerretti DP, Paxton RJ, March CJ, Black RA (1998) An essential role for ectodomain shedding in mammalian development. Science 282:1281–1284

    Article  CAS  PubMed  Google Scholar 

  44. Jackson LF, Qiu TH, Sunnarborg SW, Chang A, Zhang C, Patterson C, Lee DC (2003) Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling. EMBO J 22(11):2704–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sternlicht MD, Sunnarborg SW, Kouros-Mehr H, Yu Y, Lee DC, Werb Z (2005) Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 132(17):3923–3933

    Article  CAS  PubMed  Google Scholar 

  46. Franzke CW, Cobzaru C, Triantafyllopoulou A, Loffek S, Horiuchi K, Threadgill DW, Kurz T, van Rooijen N, Bruckner-Tuderman L, Blobel CP (2012) Epidermal ADAM17 maintains the skin barrier by regulating EGFR ligand-dependent terminal keratinocyte differentiation. J Exp Med 209(6):1105–1119. https://doi.org/10.1084/jem.20112258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chalaris A, Adam N, Sina C, Rosenstiel P, Lehmann-Koch J, Schirmacher P, Hartmann D, Cichy J, Gavrilova O, Schreiber S, Jostock T, Matthews V, Hasler R, Becker C, Neurath MF, Reiss K, Saftig P, Scheller J, Rose-John S (2010) Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. J Exp Med 207(8):1617–1624. https://doi.org/10.1084/jem.20092366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gronich N, Lavi I, Barnett-Griness O, Saliba W, Abernethy DR, Rennert G (2017) Tyrosine kinase-targeting drugs-associated heart failure. Br J Cancer 116(10):1366–1373. https://doi.org/10.1038/bjc.2017.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tang XM, Chen H, Liu Y, Huang BL, Zhang XQ, Yuan JM, He X (2017) The cardiotoxicity of cetuximab as single therapy in Chinese chemotherapy-refractory metastatic colorectal cancer patients. Medicine (Baltimore) 96(3):e5946. https://doi.org/10.1097/MD.0000000000005946

    Article  CAS  Google Scholar 

  50. Monsuez JJ, Charniot JC, Vignat N, Artigou JY (2010) Cardiac side-effects of cancer chemotherapy. Int J Cardiol 144(1):3–15. https://doi.org/10.1016/j.ijcard.2010.03.003

    Article  PubMed  Google Scholar 

  51. Gomez-Gaviro MV, Scott CE, Sesay AK, Matheu A, Booth S, Galichet C, Lovell-Badge R (2012) Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. Proc Natl Acad Sci USA 109(4):1317–1322. https://doi.org/10.1073/pnas.1016199109

    Article  PubMed  PubMed Central  Google Scholar 

  52. Farber G, Hurtado R, Loh S, Monette S, Mtui J, Kopan R, Quaggin S, Meyer-Schwesinger C, Herzlinger D, Scott RP, Blobel CP (2018) Glomerular endothelial cell maturation depends on ADAM10, a key regulator of Notch signaling. Angiogenesis. https://doi.org/10.1007/s10456-018-9599-4

    Article  PubMed  PubMed Central  Google Scholar 

  53. MacGrogan D, Munch J, de la Pompa JL (2018) Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nat Rev Cardiol 15(11):685–704. https://doi.org/10.1038/s41569-018-0100-2

    Article  PubMed  Google Scholar 

  54. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230(2):230–242

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Y, Huang Y, Cantalupo A, Azevedo PS, Siragusa M, Bielawski J, Giordano FJ, Di Lorenzo A (2016) Endothelial Nogo-B regulates sphingolipid biosynthesis to promote pathological cardiac hypertrophy during chronic pressure overload. JCI Insight. https://doi.org/10.1172/jci.insight.85484

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  57. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323. https://doi.org/10.1186/1471-2105-12-323

    Article  CAS  Google Scholar 

  58. Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, Blewitt ME, Asselin-Labat ML, Smyth GK, Ritchie ME (2015) Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res 43(15):e97. https://doi.org/10.1093/nar/gkv412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361. https://doi.org/10.1093/nar/gkw1092

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Weill Cornell Genomics core for their contribution to the RNA-seq analysis presented here. In addition, we would like to thank Chad Kurylo for his insightful comments and suggestions. This study was funded in part by NIH GM64750 to CPB. G. Farber is funded by American Heart Association Predoctoral Fellowship (#17PRE33380001). S. Monette and the Laboratory of Comparative Pathology was supported in part by NCI Grant P30 CA008748. A. di Lorenzo was supported by NIH NHLBI R01HL126913 and NINDS R21NS104512.

Author information

Authors and Affiliations

Authors

Contributions

GF and CB designed the experiments and prepared the manuscript. GF harvested all tissue and maintained the mouse colony. GF performed immunofluorescence experiments and analyses. MP performed the RNA-seq analysis. GF and NLG prepared the samples for RNA sequencing. YZ performed the echocardiogram experiments. SM analyzed and collected images for histopathology analysis. AdL and SB provided resources and relevant feedback. All authors contributed to the editing of the manuscript.

Corresponding author

Correspondence to Carl P. Blobel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 19667 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farber, G., Parks, M.M., Lustgarten Guahmich, N. et al. ADAM10 controls the differentiation of the coronary arterial endothelium. Angiogenesis 22, 237–250 (2019). https://doi.org/10.1007/s10456-018-9653-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-018-9653-2

Keywords

Navigation