Understanding the evolving phenotype of vascular complications in telomere biology disorders

Abstract

Vascular complications such as bleeding due to gastrointestinal telangiectatic anomalies, pulmonary arteriovenous malformations, hepatopulmonary syndrome, and retinal vessel abnormalities are being reported in patients with telomere biology disorders (TBDs) more frequently than previously described. The international clinical care consortium of telomere-associated ailments and family support group Dyskeratosis Congenita Outreach, Inc. held a workshop on vascular abnormalities in the TBDs at the National Cancer Institute in October 2017. Clinicians and basic scientists reviewed current data on vascular complications, hypotheses for the underlying biology and developed new collaborations to address the etiology and clinical management of vascular complications in TBDs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Bertuch AA (2016) The molecular genetics of the telomere biology disorders. RNA Biol 13(8):696–706. https://doi.org/10.1080/15476286.2015.1094596

    Article  PubMed  Google Scholar 

  2. 2.

    Savage SA (2014) Human telomeres and telomere biology disorders. Prog Mol Biol Transl Sci 125:41–66. https://doi.org/10.1016/B978-0-12-397898-1.00002-5

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Stanley SE, Armanios M (2015) The short and long telomere syndromes: paired paradigms for molecular medicine. Curr Opin Genet Dev 33:1–9. https://doi.org/10.1016/j.gde.2015.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Savage SA, Dokal I, Armanios M, Aubert G, Cowen EW, Domingo DL, Giri N, Greene MH, Orchard PJ, Tolar J, Tsilou E, Van Waes C, Wong JM, Young NS, Alter BP (2009) Dyskeratosis congenita: the first NIH clinical research workshop. Pediatr Blood Cancer 53(3):520–523. https://doi.org/10.1002/pbc.22061

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Dokal I, Vulliamy T, Mason P, Bessler M (2015) Clinical utility gene card for: dyskeratosis congenita—update 2015. Eur J Hum Genet 23 (4). https://doi.org/10.1038/ejhg.2014.170

  6. 6.

    Savage SA (1993) Dyskeratosis congenita. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews((R)). University of Washington, Seattle (WA)

    Google Scholar 

  7. 7.

    Mitchell JR, Wood E, Collins K (1999) A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402(6761):551–555. https://doi.org/10.1038/990141

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, Poustka A, Dokal I (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19(1):32–38. https://doi.org/10.1038/ng0598-32

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Stanley SE, Gable DL, Wagner CL, Carlile TM, Hanumanthu VS, Podlevsky JD, Khalil SE, DeZern AE, Rojas-Duran MF, Applegate CD, Alder JK, Parry EM, Gilbert WV, Armanios M (2016) Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis-emphysema. Sci Transl Med 8(351):351ra107. https://doi.org/10.1126/scitranslmed.aaf7837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Simon AJ, Lev A, Zhang Y, Weiss B, Rylova A, Eyal E, Kol N, Barel O, Cesarkas K, Soudack M, Greenberg-Kushnir N, Rhodes M, Wiest DL, Schiby G, Barshack I, Katz S, Pras E, Poran H, Reznik-Wolf H, Ribakovsky E, Simon C, Hazou W, Sidi Y, Lahad A, Katzir H, Sagie S, Aqeilan HA, Glousker G, Amariglio N, Tzfati Y, Selig S, Rechavi G, Somech R (2016) Mutations in STN1 cause Coats plus syndrome and are associated with genomic and telomere defects. J Exp Med 213(8):1429–1440. https://doi.org/10.1084/jem.20151618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Takai H, Jenkinson E, Kabir S, Babul-Hirji R, Najm-Tehrani N, Chitayat DA, Crow YJ, de Lange T (2016) A POT1 mutation implicates defective telomere end fill-in and telomere truncations in Coats plus. Genes Dev 30(7):812–826. https://doi.org/10.1101/gad.276873.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Stuart BD, Choi J, Zaidi S, Xing C, Holohan B, Chen R, Choi M, Dharwadkar P, Torres F, Girod CE, Weissler J, Fitzgerald J, Kershaw C, Klesney-Tait J, Mageto Y, Shay JW, Ji W, Bilguvar K, Mane S, Lifton RP, Garcia CK (2015) Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat Genet 47(5):512–517. https://doi.org/10.1038/ng.3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Vulliamy TJ, Walne A, Baskaradas A, Mason PJ, Marrone A, Dokal I (2005) Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol Dis 34(3):257–263. https://doi.org/10.1016/j.bcmd.2004.12.008.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Ly H, Calado RT, Allard P, Baerlocher GM, Lansdorp PM, Young NS, Parslow TG (2005) Functional characterization of telomerase RNA variants found in patients with hematologic disorders. Blood 105(6):2332–2339. https://doi.org/10.1182/blood-2004-09-3659

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Calado RT, Regal JA, Kleiner DE, Schrump DS, Peterson NR, Pons V, Chanock SJ, Lansdorp PM, Young NS (2009) A spectrum of severe familial liver disorders associate with telomerase mutations. PLoS ONE 4(11):e7926. https://doi.org/10.1371/journal.pone.0007926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Alder JK, Hanumanthu VS, Strong MA, DeZern AE, Stanley SE, Takemoto CM, Danilova L, Applegate CD, Bolton SG, Mohr DW, Brodsky RA, Casella JF, Greider CW, Jackson JB, Armanios M (2018) Diagnostic utility of telomere length testing in a hospital-based setting. Proc Natl Acad Sci USA 115(10):E2358–E2365

    Article  PubMed  Google Scholar 

  17. 17.

    Glousker G, Touzot F, Revy P, Tzfati Y, Savage SA (2015) Unraveling the pathogenesis of Hoyeraal-Hreidarsson syndrome, a complex telomere biology disorder. Br J Haematol 170(4):457–471. https://doi.org/10.1111/bjh.13442

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Anderson BH, Kasher PR, Mayer J, Szynkiewicz M, Jenkinson EM, Bhaskar SS, Urquhart JE, Daly SB, Dickerson JE, O’Sullivan J, Leibundgut EO, Muter J, Abdel-Salem GM, Babul-Hirji R, Baxter P, Berger A, Bonafe L, Brunstom-Hernandez JE, Buckard JA, Chitayat D, Chong WK, Cordelli DM, Ferreira P, Fluss J, Forrest EH, Franzoni E, Garone C, Hammans SR, Houge G, Hughes I, Jacquemont S, Jeannet PY, Jefferson RJ, Kumar R, Kutschke G, Lundberg S, Lourenco CM, Mehta R, Naidu S, Nischal KK, Nunes L, Ounap K, Philippart M, Prabhakar P, Risen SR, Schiffmann R, Soh C, Stephenson JB, Stewart H, Stone J, Tolmie JL, van der Knaap MS, Vieira JP, Vilain CN, Wakeling EL, Wermenbol V, Whitney A, Lovell SC, Meyer S, Livingston JH, Baerlocher GM, Black GC, Rice GI, Crow YJ (2012) Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nat Genet 44(3):338–342. https://doi.org/10.1038/ng.1084

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Polvi A, Linnankivi T, Kivela T, Herva R, Keating JP, Makitie O, Pareyson D, Vainionpaa L, Lahtinen J, Hovatta I, Pihko H, Lehesjoki AE (2012) Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts. Am J Hum Genet 90(3):540–549. https://doi.org/10.1016/j.ajhg.2012.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Keller RB, Gagne KE, Usmani GN, Asdourian GK, Williams DA, Hofmann I, Agarwal S (2012) CTC1 Mutations in a patient with dyskeratosis congenita. Pediatr Blood Cancer 59(2):311–314

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Walne AJ, Bhagat T, Kirwan M, Gitiaux C, Desguerre I, Leonard N, Nogales E, Vulliamy T, Dokal S (2013) Mutations in the telomere capping complex in bone marrow failure and related syndromes. Haematologica 98(3):334–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Khincha PP, Bertuch AA, Agarwal S, Townsley DM, Young NS, Keel S, Shimamura A, Boulad F, Simoneau T, Justino H, Kuo C, Artandi S, McCaslin C, Cox DW, Chaffee S, Collins BF, Giri N, Alter BP, Raghu G, Savage SA (2017) Pulmonary arteriovenous malformations: an uncharacterised phenotype of dyskeratosis congenita and related telomere biology disorders. Eur Respir J. https://doi.org/10.1183/13993003.01640-2016

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Gorgy AI, Jonassaint NL, Stanley SE, Koteish A, DeZern AE, Walter JE, Sopha SC, Hamilton JP, Hoover-Fong J, Chen AR, Anders RA, Kamel IR, Armanios M (2015) Hepatopulmonary syndrome is a frequent cause of dyspnea in the short telomere disorders. Chest 148(4):1019–1026. https://doi.org/10.1378/chest.15-0825

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Anderson BH, Kasher PR, Mayer J, Szynkiewicz M, Jenkinson EM, Bhaskar SS, Urguhart JE, Daly SB, Dickerson JE, O’Sullivan J, Leibundgut EO, Muter J, Abdel-Salem GM, Babul-Hirji R, Baxter P, Berger A, Bonafé L, Brunstom-Hernandez JE, Buckard JA, Chitayat D, Chong WK, Cordelli DM, Ferreira P, Fluss J, Forrest EH, Franzoni E, Garcone C, Hammans SR, Houge G, Hughes I, Jacquemont S, Jeannet PY, Jerfferson RJ, Kumar R, Kutschke G, Lundberg S, Lourenço CM, Mehta R, Naidu S, Nischal KK, Nunes L, Ounap K, Philippart M, Prabhakar P, Risen SR, Schiffman R, Soh C, Stephenson JB, Stewart H, Stone J, Tolmie JL, van der Knaap MS, Vieira JP, Vilain CN, Wakeling EL, Wermenbol V, Whitney A, Lovell SC, Meyer S, Livingston JH, Baerlocher GM, Black GC, Rice GI, Crow YJ (2012) Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nat Genet 44(3):338–342

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Imai J, Suzuki T, Yoshikawa M, Dekiden M, Nakae H, Nakahara F, Tsuda S, Mizukami H, Koike J, Igarashi M, Yabe H, Mine T (2016) Fatal hemorrhagic gastrointestinal angioectasia after bone marrow transplantation for dyskeratosis congenita. Intern Med 55(23):3441–3444

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Crow YJ, McMenamin J, Haenggeli CA, Hadley DM, Tirupathi S, Treacy EP, Zuberi SM, Browne BH, Tolmie JL, Stephenson JB (2004) Coats’ plus: a progressive familial syndrome of bilateral Coats’ disease, characteristic cerebral calcification, leukoencephalopathy, slow pre- and post-natal linear growth and defects of bone marrow and integument. Neuropediatrics 35(1):10–19. https://doi.org/10.1055/s-2003-43552

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Bisserbe A, Tertian G, Buffet C, Turhan A, Lambotte O, Nasser G, Alvin P, Tardieu M, Riant F, Bergametti F, Tournier-Lasserve E, Denier C (2015) Cerebro-retinal microangiopathy with calcifications and cysts due to recessive mutations in the CTC1 gene. Rev Neurol (Paris) 171(5):445–449. https://doi.org/10.1016/j.neurol.2015.01.566

    Article  CAS  Google Scholar 

  28. 28.

    Briggs TA, Hubbard M, Hawkins C, Cole T, Livingston JH, Crow YJ, Pigott A (2011) Treatment of gastrointestinal bleeding in a probable case of cerebroretinal microangiopathy with calcifications and cysts. Mol Syndromol 1(4):159–162. https://doi.org/10.1159/000321559

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Jonassaint NL, Guo N, Califano JA, Montgomery EA, Armanios M (2013) The gastrointestinal manifestations of telomere-mediated disease. Aging Cell 12(2):319–323. https://doi.org/10.1111/acel.12041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Tsilou ET, Giri N, Weinstein S, Mueller C, Savage SA, Alter BP (2010) Ocular and orbital manifestations of the inherited bone marrow failure syndromes: fanconi anemia and dyskeratosis congenita. Ophthalmology 117(3):615–622. https://doi.org/10.1016/j.ophtha.2009.08.023

    Article  PubMed  Google Scholar 

  31. 31.

    Indaram M, Agarwal S, Yonekawa Y (2017) Exudative vitreoretinopathy in dyskeratosis congenita. Ophthalmology 124(8):1246

    Article  PubMed  Google Scholar 

  32. 32.

    Thanos A, Todorich B, Hypes S, Yonekawa Y, Thomas B, Randhawa S, Drenser K, Trese M (2017) Retinal vascular tortuosity and exudative retinopathy in a family with dyskeratosis congenita masquerading as familial exudative vitreoretinopathy. Retin Cases Brief Rep 11:S187–S190

    Article  PubMed  Google Scholar 

  33. 33.

    Netravathi M, Kumari R, Kapoor S, Dakle P, Dwivedi MK, Roy SD, Pandey P, Saini J, Ramakrishna A, Navalli D, Satishchandra P, Pal PK, Kumar A, Faruq M (2015) Whole exome sequencing in an Indian family links Coats plus syndrome and dextrocardia with a homozygous novel CTC1 and a rare HES7 variation. BMC Med Genet 16:5. https://doi.org/10.1186/s12881-015-0151-8

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Patel PL, Suram A, Mirani N, Bischof O, Herbig U (2016) Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence. Proc Natl Acad Sci USA 113(34):E5024–E5033. https://doi.org/10.1073/pnas.1602379113

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Liu Y, Bloom SI, Donato AJ (2018) The role of senescence, telomere dysfunction and shelterin in vascular aging. Microcirculation. https://doi.org/10.1111/micc.12487

    Article  PubMed  Google Scholar 

  36. 36.

    Gay A, Towler DA (2017) Wnt signaling in cardiovascular disease: opportunities and challenges. Curr Opin Lipidol 28(5):387–396. https://doi.org/10.1097/MOL.0000000000000445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Yang TB, Chen Q, Deng JT, Jagannathan G, Tobias JW, Schultz DC, Wang S, Lengner CJ, Rustgi AK, Lynch JP, Johnson FB (2017) Mutual reinforcement between telomere capping and canonical Wnt signalling in the intestinal stem cell niche. Nat Commun 8:14766. https://doi.org/10.1038/ncomms14766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Woo DH, Chen Q, Yang TL, Glineburg MR, Hoge C, Leu NA, Johnson FB, Lengner CJ (2016) Enhancing a Wnt-Telomere feedback loop restores intestinal stem cell function in a human organotypic model of dyskeratosis congenita. Cell Stem Cell 19(3):397–405. https://doi.org/10.1016/j.stem.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Fernandez RJ 3rd, Johnson FB (2018) A regulatory loop connecting WNT signaling and telomere capping: possible therapeutic implications for dyskeratosis congenita. Ann NY Acad Sci 1418(1):56–68. https://doi.org/10.1111/nyas.13692

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Lai MB, Zhang C, Shi J, Johnson V, Khandan L, McVey J, Klymkowsky MW, Chen Z, Junge HJ (2017) TSPAN12 is a Norrin Co-receptor that amplifies Frizzled4 ligand selectivity and signaling. Cell Rep 19(13):2809–2822. https://doi.org/10.1016/j.celrep.2017.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Panagiotou ES, Sanjurjo Soriano C, Poulter JA, Lord EC, Dzulova D, Kondo H, Hiyoshi A, Chung BH, Chu YW, Lai CHY, Tafoya ME, Karjosukarso D, Collin RWJ, Topping J, Downey LM, Ali M, Inglehearn CF, Toomes C (2017) Defects in the cell signaling mediator beta-Catenin cause the retinal vascular condition FEVR. Am J Hum Genet 100(6):960–968. https://doi.org/10.1016/j.ajhg.2017.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Wu JH, Liu JH, Ko YC, Wang CT, Chung YC, Chu KC, Liu TT, Chao HM, Jiang YJ, Chen SJ, Chung MY (2016) Haploinsufficiency of RCBTB1 is associated with Coats disease and familial exudative vitreoretinopathy. Hum Mol Genet 25(8):1637–1647. https://doi.org/10.1093/hmg/ddw041

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Curradi G, Walters MS, Ding BS, Rafii S, Hackett NR, Crystal RG (2012) Airway basal cell vascular endothelial growth factor-mediated cross-talk regulates endothelial cell-dependent growth support of human airway basal cells. Cell Mol Life Sci 69(13):2217–2231. https://doi.org/10.1007/s00018-012-0922-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all workshop participants for attending and participating in this highly informative and collaborative meeting. The workshop was funded by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, and by Dyskeratosis Congenita Outreach, Inc., the Translational Research Program (Boston Children’s Hospital) and Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, and Texas Children’s Cancer and Hematology Centers.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Sharon A. Savage.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Higgs, C., Crow, Y.J., Adams, D.M. et al. Understanding the evolving phenotype of vascular complications in telomere biology disorders. Angiogenesis 22, 95–102 (2019). https://doi.org/10.1007/s10456-018-9640-7

Download citation

Keywords

  • Telomere
  • Dyskeratosis congenita
  • Consortium
  • Vascular biology