Skip to main content
Log in

Prion protein is essential for diabetic retinopathy-associated neovascularization

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Diabetic retinopathy (DR), a major complication of diabetes caused by vascular damage and pathological proliferation of retinal vessels, often progresses to vision loss. Vascular endothelial growth factor (VEGF) signaling plays a pivotal role in the development of DR, but the exact underlying molecular mechanisms remain ill-defined. Cellular prion protein (PrPc) is a surface protein expressed by vascular endothelial cells, and the increased expression of PrPc is associated with physiological and pathological vascularization. Nevertheless, a role for PrPc in the development of DR has not been appreciated. Here, we addressed this question. We found that the development of streptozocin (STZ)-induced DR, but not the STZ-induced hyperglycemia/diabetes itself, was significantly attenuated in PrPc-KO mice, compared to control wildtype (WT) mice, evident by measurement of retinal vascular leakage, retinal neovascularization, a retinopathy score and visual acuity assessment. Moreover, the attenuation of DR severity seemingly resulted from attenuation of retinal neovascularization via VEGF/ras/rac signaling. Together, our study suggests a previously unappreciated role for PrPc in the development of DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gannon M (2007) BuMP-ing up insulin secretion by pancreatic beta cells. Cell Metab 5(3):157–159. https://doi.org/10.1016/j.cmet.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  2. Pipeleers D, Ling Z (1992) Pancreatic beta cells in insulin-dependent diabetes. Diabetes Metab Rev 8(3):209–227

    Article  CAS  PubMed  Google Scholar 

  3. Hammes HP, Feng Y, Pfister F, Brownlee M (2011) Diabetic retinopathy: targeting vasoregression. Diabetes 60(1):9–16. https://doi.org/10.2337/db10-0454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Engerman RL (1989) Pathogenesis of diabetic retinopathy. Diabetes 38(10):1203–1206

    Article  CAS  PubMed  Google Scholar 

  5. Cao Y (2013) Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab 18(4):478–489. https://doi.org/10.1016/j.cmet.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  6. Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, Prasadan K, Shiota C, Gittes GK (2013) Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic Beta cells as a regulator of Beta cell mass. J Biol Chem 288(12):8636–8646. https://doi.org/10.1074/jbc.M112.422949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, Gaffar I, Shiota C, Gittes GK (2014) Pancreatic duct cells as a source of VEGF in mice. Diabetologia 57(5):991–1000. https://doi.org/10.1007/s00125-014-3179-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peggion C, Bertoli A, Sorgato MC (2017) Almost a century of prion protein(s): from pathology to physiology, and back to pathology. Biochem Biophys Res Commun 483(4):1148–1155. https://doi.org/10.1016/j.bbrc.2016.07.118

    Article  CAS  PubMed  Google Scholar 

  9. Atkinson CJ, Zhang K, Munn AL, Wiegmans A, Wei MQ (2016) Prion protein scrapie and the normal cellular prion protein. Prion 10(1):63–82. https://doi.org/10.1080/19336896.2015.1110293

    Article  CAS  PubMed  Google Scholar 

  10. Weiss RB (1982) Streptozocin: a review of its pharmacology, efficacy, and toxicity. Cancer Treat Rep 66(3):427–438

    CAS  PubMed  Google Scholar 

  11. Zhang B, Cowden D, Zhang F, Yuan J, Siedlak S, Abouelsaad M, Zeng L, Zhou X, O’Toole J, Das AS, Kofskey D, Warren M, Bian Z, Cui Y, Tan T, Kresak A, Wyza RE, Petersen RB, Wang GX, Kong Q, Wang X, Sedor J, Zhu X, Zhu H, Zou WQ (2015) Prion protein protects against renal ischemia/reperfusion injury. PLoS ONE 10(9):e0136923. https://doi.org/10.1371/journal.pone.0136923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xiao X, Chen C, Guo P, Zhang T, Fischbach S, Fusco J, Shiota C, Prasadan K, Dong H, Gittes GK (2017) Forkhead box protein 1 (FoxO1) inhibits accelerated beta cell aging in pancreas-specific SMAD7 mutant mice. J Biol Chem 292(8):3456–3465. https://doi.org/10.1074/jbc.M116.770032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiao X, Chen Z, Shiota C, Prasadan K, Guo P, El-Gohary Y, Paredes J, Welsh C, Wiersch J, Gittes GK (2013) No evidence for beta cell neogenesis in murine adult pancreas. J Clin Invest 123(5):2207–2217. https://doi.org/10.1172/JCI66323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiao X, Fischbach S, Song Z, Gaffar I, Zimmerman R, Wiersch J, Prasadan K, Shiota C, Guo P, Ramachandran S, Witkowski P, Gittes GK (2016) Transient suppression of TGFbeta receptor signaling facilitates human islet transplantation. Endocrinology 157(4):1348–1356. https://doi.org/10.1210/en.2015-1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiao X, Fischbach S, Zhang T, Chen C, Sheng Q, Zimmerman R, Patnaik S, Fusco J, Ming Y, Guo P, Shiota C, Prasadan K, Gangopadhyay N, Husain SZ, Dong H, Gittes GK (2017) SMAD3/Stat3 signaling mediates beta-cell epithelial-mesenchymal transition in chronic pancreatitis-related diabetes. Diabetes 66(10):2646–2658. https://doi.org/10.2337/db17-0537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, Song Z, El-Gohary Y, Prasadan K, Shiota C, Gittes GK (2014) M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci USA 111(13):E1211-1220. https://doi.org/10.1073/pnas.1321347111

    Article  CAS  Google Scholar 

  17. Xiao X, Guo P, Shiota C, Prasadan K, El-Gohary Y, Wiersch J, Gaffar I, Gittes GK (2013) Neurogenin3 activation is not sufficient to direct duct-to-beta cell transdifferentiation in the adult pancreas. J Biol Chem 288(35):25297–25308. https://doi.org/10.1074/jbc.M113.484022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao X, Wiersch J, El-Gohary Y, Guo P, Prasadan K, Paredes J, Welsh C, Shiota C, Gittes GK (2013) TGFbeta receptor signaling is essential for inflammation-induced but not beta-cell workload-induced beta-cell proliferation. Diabetes 62(4):1217–1226. https://doi.org/10.2337/db12-1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee CA, Li G, Patel MD, Petrash JM, Benetz BA, Veenstra A, Amengual J, von Lintig J, Burant CJ, Tang J, Kern TS (2014) Diabetes-induced impairment in visual function in mice: contributions of p38 MAPK, rage, leukocytes, and aldose reductase. Invest Ophthalmol Vis Sci 55(5):2904–2910. https://doi.org/10.1167/iovs.13-11659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Higgins RD, Yu K, Sanders RJ, Nandgaonkar BN, Rotschild T, Rifkin DB (1999) Diltiazem reduces retinal neovascularization in a mouse model of oxygen induced retinopathy. Curr Eye Res 18(1):20–27

    Article  CAS  PubMed  Google Scholar 

  21. Cai X, Xu H, Chen ZJ (2017) Prion-Like Polymerization in Immunity and Inflammation. Cold Spring Harb Perspect Biol 9 (4). https://doi.org/10.1101/cshperspect.a023580

    Article  Google Scholar 

  22. Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356(6370):577–582. https://doi.org/10.1038/356577a0

    Article  CAS  PubMed  Google Scholar 

  23. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zanetti F, Carpi A, Menabo R, Giorgio M, Schulz R, Valen G, Baysa A, Massimino ML, Sorgato MC, Bertoli A, Di Lisa F (2014) The cellular prion protein counteracts cardiac oxidative stress. Cardiovasc Res 104(1):93–102. https://doi.org/10.1093/cvr/cvu194

    Article  CAS  PubMed  Google Scholar 

  25. Oh JM, Choi EK, Carp RI, Kim YS (2012) Oxidative stress impairs autophagic flux in prion protein-deficient hippocampal cells. Autophagy 8(10):1448–1461. https://doi.org/10.4161/auto.21164

    Article  CAS  PubMed  Google Scholar 

  26. Watt NT, Taylor DR, Gillott A, Thomas DA, Perera WS, Hooper NM (2005) Reactive oxygen species-mediated beta-cleavage of the prion protein in the cellular response to oxidative stress. J Biol Chem 280(43):35914–35921. https://doi.org/10.1074/jbc.M507327200

    Article  CAS  PubMed  Google Scholar 

  27. Yun CW, Yun S, Lee JH, Han YS, Yoon YM, An D, Lee SH (2016) Silencing prion protein in HT29 human colorectal cancer cells enhances anticancer response to fucoidan. Anticancer Res 36(9):4449–4458. https://doi.org/10.21873/anticanres.10989

    Article  CAS  PubMed  Google Scholar 

  28. Chen MC, Hsu WL, Hwang PA, Chou TC (2015) Low molecular weight fucoidan inhibits tumor angiogenesis through downregulation of HIF-1/VEGF signaling under hypoxia. Mar Drugs 13(7):4436–4451. https://doi.org/10.3390/md13074436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Al-Hilal TA, Chung SW, Choi JU, Alam F, Park J, Kim SW, Kim SY, Ahsan F, Kim IS, Byun Y (2016) Targeting prion-like protein doppel selectively suppresses tumor angiogenesis. J Clin Invest 126(4):1251–1266. https://doi.org/10.1172/JCI83427

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingyan Zhu or Xiangwei Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Xu, J., Liu, Y. et al. Prion protein is essential for diabetic retinopathy-associated neovascularization. Angiogenesis 21, 767–775 (2018). https://doi.org/10.1007/s10456-018-9619-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-018-9619-4

Keywords

Navigation