Glomerular endothelial cell maturation depends on ADAM10, a key regulator of Notch signaling
- 270 Downloads
Abstract
The principal function of glomeruli is to filter blood through a highly specialized filtration barrier consisting of a fenestrated endothelium, the glomerular basement membrane and podocyte foot processes. Previous studies have uncovered a crucial role of endothelial a disintegrin and metalloprotease 10 (ADAM10) and Notch signaling in the development of glomeruli, yet the resulting defects have not been further characterized nor understood in the context of kidney development. Here, we used several different experimental approaches to analyze the kidneys and glomeruli from mice lacking ADAM10 in endothelial cells (A10ΔEC mice). Scanning electron microscopy of glomerular casts demonstrated enlarged vascular diameter and increased intussusceptive events in A10ΔEC glomeruli compared to controls. Consistent with these findings, genes known to regulate vessel caliber (Apln, AplnR and Vegfr3) are significantly upregulated in A10ΔEC glomeruli. Moreover, transmission electron microscopy revealed the persistence of diaphragms in the fenestrae of A10ΔEC glomerular endothelial cells, which was corroborated by the elevated expression of the protein PLVAP/PV-1, an integral component of fenestral diaphragms. Analysis of gross renal vasculature by light sheet microscopy showed no major alteration of the branching pattern, indicating a localized importance of ADAM10 in the glomerular endothelium. Since intussusceptions and fenestrae with diaphragms are normally found in developing, but not mature glomeruli, our results provide the first evidence for a crucial role of endothelial ADAM10, a key regulator of Notch signaling, in promoting the development and maturation of the glomerular vasculature.
Keywords
Glomeruli Endothelial cells A disintegrin and metalloprotease 10 (ADAM10) Notch Fenestra DiaphragmsNotes
Acknowledgements
G. Farber is currently supported by a predoctoral Fellowship from the American Heart Association and was previously supported by Molecular and Cellular Biology T32 training Grant from the National Institutes of Health, 5T32GM008539. These studies were supported in part by the National Institutes of Health R01 Grant GM64750 to CPB. We would like to thank Dr. Alison North and Rockefeller University’s Bio-Imaging Resource Center for the training and usage of the light sheet microscopy and image analysis, Dr. Kunihiro Uryu and Rockefeller University’s Electron Microscopy Resource Center for training on and usage of scanning electron microscopy. A special thanks to Lee Cohen Gould and Juan Jimenez at the Weill Cornell Medicine Imaging Core Facility for the preparation of the transmission electron microscopy samples and training, and Dr. Katia Manova, Ning Fan and Afsar Barlas from the Molecular Cytology Core Facility at Memorial Sloan-Kettering Cancer Center (supported by the Cancer Center Support Grant P30CA008748). S. Monette and the Laboratory of Comparative Pathology are also supported in part by Cancer Center Support Grant P30CA008748.
Author’s Contribution
GF and CB conceived of this study, RH, SL, SM, JM and CMS performed experiments and interpreted the results, GF drafted the manuscript, all authors contributed to editing, and GF and RPS prepared the figures.
Compliance with Ethical Standards
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- 1.Scott RP, Quaggin SE (2015) Review series: the cell biology of renal filtration. J Cell Biol 209(2):199–210. https://doi.org/10.1083/jcb.201410017 CrossRefPubMedPubMedCentralGoogle Scholar
- 2.Eremina V, Baelde HJ, Quaggin SE (2007) Role of the VEGF-A signaling pathway in the glomerulus: evidence for crosstalk between components of the glomerular filtration barrier. Nephron Physiol 106(2):p32–p37. https://doi.org/10.1159/000101798 CrossRefPubMedGoogle Scholar
- 3.Vaughan MR, Quaggin SE (2008) How do mesangial and endothelial cells form the glomerular tuft? J Am Soc Nephrol 19(1):24–33. https://doi.org/10.1681/ASN.2007040471 CrossRefPubMedGoogle Scholar
- 4.Ichimura K, Stan RV, Kurihara H, Sakai T (2008) Glomerular endothelial cells form diaphragms during development and pathologic conditions. J Am Soc Nephrol 19(8):1463–1471. https://doi.org/10.1681/ASN.2007101138 CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Satchell SC, Braet F (2009) Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol 296(5):F947–F956. https://doi.org/10.1152/ajprenal.90601.2008 CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Stan RV (2007) Endothelial stomatal and fenestral diaphragms in normal vessels and angiogenesis. J Cell Mol Med 11(4):621–643. https://doi.org/10.1111/j.1582-4934.2007.00075.x CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J (2012) Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151(6):1332–1344. https://doi.org/10.1016/j.cell.2012.10.042 CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Covassin L, Amigo JD, Suzuki K, Teplyuk V, Straubhaar J, Lawson ND (2006) Global analysis of hematopoietic and vascular endothelial gene expression by tissue specific microarray profiling in zebrafish. Dev Biol 299(2):551–562. https://doi.org/10.1016/j.ydbio.2006.08.020 CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Chang AC, Fu Y, Garside VC, Niessen K, Chang L, Fuller M, Setiadi A, Smrz J, Kyle A, Minchinton A, Marra M, Hoodless PA, Karsan A (2011) Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev Cell 21(2):288–300. https://doi.org/10.1016/j.devcel.2011.06.022 CrossRefPubMedGoogle Scholar
- 10.Mintet E, Lavigne J, Paget V, Tarlet G, Buard V, Guipaud O, Sabourin JC, Iruela-Arispe ML, Milliat F, Francois A (2017) Endothelial Hey2 deletion reduces endothelial-to-mesenchymal transition and mitigates radiation proctitis in mice. Sci Rep 7(1):4933. https://doi.org/10.1038/s41598-017-05389-8 CrossRefPubMedPubMedCentralGoogle Scholar
- 11.Quaggin SE, Kreidberg JA (2008) Development of the renal glomerulus: good neighbors and good fences. Development 135(4):609–620. https://doi.org/10.1242/dev.001081 CrossRefPubMedGoogle Scholar
- 12.Boyle SC, Liu Z, Kopan R (2014) Notch signaling is required for the formation of mesangial cells from a stromal mesenchyme precursor during kidney development. Development 141(2):346–354. https://doi.org/10.1242/dev.100271 CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Cheng HT, Kopan R (2005) The role of Notch signaling in specification of podocyte and proximal tubules within the developing mouse kidney. Kidney Int 68(5):1951–1952. https://doi.org/10.1111/j.1523-1755.2005.00627.x CrossRefPubMedGoogle Scholar
- 14.Glomski K, Monette S, Manova K, De Strooper B, Saftig P, Blobel CP (2011) Deletion of Adam10 in endothelial cells leads to defects in organ-specific vascular structures. Blood 118(4):1163–1174. https://doi.org/10.1182/blood-2011-04-348557 CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Bozkulak EC, Weinmaster G (2009) Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol Cell Biol 29(21):5679–5695CrossRefPubMedPubMedCentralGoogle Scholar
- 16.van Tetering G, van Diest P, Verlaan I, van der Wall E, Kopan R, Vooijs M (2009) Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J Biol Chem 284(45):31018–31027CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Rooke J, Pan D, Xu T, Rubin GM (1996) KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 273(5279):1227–1230CrossRefPubMedGoogle Scholar
- 18.Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T, Lena Illert A, von Figura K, Saftig P (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11(21):2615–2624CrossRefPubMedGoogle Scholar
- 19.Alabi RO, Glomski K, Haxaire C, Weskamp G, Monette S, Blobel CP (2016) ADAM10-dependent signaling through Notch1 and Notch4 controls development of organ-specific vascular beds. Circ Res 119(4):519–531. https://doi.org/10.1161/CIRCRESAHA.115.307738 CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Gridley T (2007) Notch signaling in vascular development and physiology. Development 134(15):2709–2718CrossRefPubMedGoogle Scholar
- 21.Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780CrossRefPubMedGoogle Scholar
- 22.Hofmann JJ, Iruela-Arispe ML (2007) Notch signaling in blood vessels: Who is talking to whom about what? Circ Res 100(11):1556–1568. https://doi.org/10.1161/01.RES.0000266408.42939.e4 CrossRefPubMedGoogle Scholar
- 23.Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21(20):2511–2524CrossRefPubMedGoogle Scholar
- 24.Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492):323–328. https://doi.org/10.1038/nature13145 CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Ramasamy SK, Kusumbe AP, Wang L, Adams RH (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507(7492):376–380. https://doi.org/10.1038/nature13146 CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Cuervo H, Nielsen CM, Simonetto DA, Ferrell L, Shah VH, Wang RA (2016) Endothelial notch signaling is essential to prevent hepatic vascular malformations in mice. Hepatology. https://doi.org/10.1002/hep.28713 PubMedPubMedCentralGoogle Scholar
- 27.Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 3(1):a006569. https://doi.org/10.1101/cshperspect.a006569 CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Takemoto M, Asker N, Gerhardt H, Lundkvist A, Johansson BR, Saito Y, Betsholtz C (2002) A new method for large scale isolation of kidney glomeruli from mice. Am J Pathol 161(3):799–805. https://doi.org/10.1016/S0002-9440(10)64239-3 CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Stan RV, Tkachenko E, Niesman IR (2004) PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms. Mol Biol Cell 15(8):3615–3630. https://doi.org/10.1091/mbc.E03-08-0593 CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Ioannidou S, Deinhardt K, Miotla J, Bradley J, Cheung E, Samuelsson S, Ng YS, Shima DT (2006) An in vitro assay reveals a role for the diaphragm protein PV-1 in endothelial fenestra morphogenesis. Proc Natl Acad Sci USA 103(45):16770–16775. https://doi.org/10.1073/pnas.0603501103 CrossRefPubMedPubMedCentralGoogle Scholar
- 31.Kidoya H, Ueno M, Yamada Y, Mochizuki N, Nakata M, Yano T, Fujii R, Takakura N (2008) Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO J 27(3):522–534. https://doi.org/10.1038/sj.emboj.7601982 CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Takakura N, Kidoya H (2009) Maturation of blood vessels by haematopoietic stem cells and progenitor cells: involvement of apelin/APJ and angiopoietin/Tie2 interactions in vessel caliber size regulation. Thromb Haemost 101(6):999–1005PubMedGoogle Scholar
- 33.Kidoya H, Takakura N (2012) Biology of the apelin-APJ axis in vascular formation. J Biochem 152(2):125–131. https://doi.org/10.1093/jb/mvs071 CrossRefPubMedGoogle Scholar
- 34.Shawber CJ, Funahashi Y, Francisco E, Vorontchikhina M, Kitamura Y, Stowell SA, Borisenko V, Feirt N, Podgrabinska S, Shiraishi K, Chawengsaksophak K, Rossant J, Accili D, Skobe M, Kitajewski J (2007) Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest 117(11):3369–3382. https://doi.org/10.1172/JCI24311 CrossRefPubMedPubMedCentralGoogle Scholar
- 35.Takabatake Y, Sugiyama T, Kohara H, Matsusaka T, Kurihara H, Koni PA, Nagasawa Y, Hamano T, Matsui I, Kawada N, Imai E, Nagasawa T, Rakugi H, Isaka Y (2009) The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. J Am Soc Nephrol 20(8):1714–1723. https://doi.org/10.1681/ASN.2008060640 CrossRefPubMedPubMedCentralGoogle Scholar
- 36.Makanya AN, Stauffer D, Ribatti D, Burri PH, Djonov V (2005) Microvascular growth, development, and remodeling in the embryonic avian kidney: the interplay between sprouting and intussusceptive angiogenic mechanisms. Microsc Res Tech 66(6):275–288. https://doi.org/10.1002/jemt.20169 CrossRefPubMedGoogle Scholar
- 37.Notoya M, Shinosaki T, Kobayashi T, Sakai T, Kurihara H (2003) Intussusceptive capillary growth is required for glomerular repair in rat Thy-1.1 nephritis. Kidney Int 63(4):1365–1373. https://doi.org/10.1046/j.1523-1755.2003.00876.x CrossRefPubMedGoogle Scholar
- 38.Foster RR, Slater SC, Seckley J, Kerjaschki D, Bates DO, Mathieson PW, Satchell SC (2008) Vascular endothelial growth factor-C, a potential paracrine regulator of glomerular permeability, increases glomerular endothelial cell monolayer integrity and intracellular calcium. Am J Pathol 173(4):938–948. https://doi.org/10.2353/ajpath.2008.070416 CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O, Duarte A, Pytowski B, Adams RH (2012) Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484(7392):110–114. https://doi.org/10.1038/nature10908 CrossRefPubMedGoogle Scholar
- 40.Coon BG, Baeyens N, Han J, Budatha M, Ross TD, Fang JS, Yun S, Thomas JL, Schwartz MA (2015) Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J Cell Biol 208(7):975–986. https://doi.org/10.1083/jcb.201408103 CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Djonov VG, Kurz H, Burri PH (2002) Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn 224(4):391–402. https://doi.org/10.1002/dvdy.10119 CrossRefPubMedGoogle Scholar
- 42.Wasserman SM, Mehraban F, Komuves LG, Yang RB, Tomlinson JE, Zhang Y, Spriggs F, Topper JN (2002) Gene expression profile of human endothelial cells exposed to sustained fluid shear stress. Physiol Genomics 12(1):13–23. https://doi.org/10.1152/physiolgenomics.00102.2002 CrossRefPubMedGoogle Scholar
- 43.Kim YH, Hu H, Guevara-Gallardo S, Lam MT, Fong SY, Wang RA (2008) Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis. Development 135(22):3755–3764. https://doi.org/10.1242/dev.022475 CrossRefPubMedPubMedCentralGoogle Scholar
- 44.Renier N, Adams EL, Kirst C, Wu Z, Azevedo R, Kohl J, Autry AE, Kadiri L, Umadevi Venkataraju K, Zhou Y, Wang VX, Tang CY, Olsen O, Dulac C, Osten P, Tessier-Lavigne M (2016) Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165(7):1789–1802. https://doi.org/10.1016/j.cell.2016.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
- 45.Meyer TN, Schwesinger C, Wahlefeld J, Dehde S, Kerjaschki D, Becker JU, Stahl RA, Thaiss F (2007) A new mouse model of immune-mediated podocyte injury. Kidney Int 72(7):841–852. https://doi.org/10.1038/sj.ki.5002450 CrossRefPubMedGoogle Scholar