Angiogenesis

, Volume 21, Issue 2, pp 237–249 | Cite as

Slit2/Robo1 signaling is involved in angiogenesis of glomerular endothelial cells exposed to a diabetic-like environment

  • Junhui Liu
  • Weiping Hou
  • Tao Guan
  • Luyao Tang
  • Xufei Zhu
  • Yi Li
  • Shihui Hou
  • Jun Zhang
  • Hua Chen
  • Yunjian Huang
Original Paper

Abstract

Abnormal angiogenesis plays a pathological role in diabetic nephropathy (DN), contributing to glomerular hypertrophy and microalbuminuria. Slit2/Robo1 signaling participates in angiogenesis in some pathological contexts, but whether it is involved in glomerular abnormal angiogenesis of early DN is unclear. The present study evaluated the effects of Slit2/Robo1 signaling pathway on angiogenesis of human renal glomerular endothelial cells (HRGECs) exposed to a diabetic-like environment or recombinant Slit2-N. To remove the effect of Slit2 derived from mesangial cells, human renal mesangial cells (HRMCs) grown in high glucose (HG) medium (33 mM) were transfected with Slit2 siRNA and then the HG-HRMCs-CM with Slit2 depletion was collected after 48 h. HRGECs were cultured in the HG-HRMCs-CM or recombinant Slit2-N for 0, 6, 12, 24, or 48 h. The mRNA and protein expressions of Slit2/Robo1, PI3K/Akt and HIF-1α/VEGF signaling pathways were detected by quantitative real-time PCR, western blotting, and ELISA, respectively. The CCK-8 cell proliferation assay, flow cytometry and the scratch wound-healing assay were used to assess cell proliferation, cycles, and migration, respectively. Matrigel was used to perform a tubule formation assay. Our results showed that the HG-HRMCs-CM with Slit2 depletion enhanced the activation of Slit2/Robo1, PI3K/Akt, and HIF-1α/VEGF signaling in HRGECs in time-dependent manner (0–24 h post-treatment). In addition, the HG-HRMCs-CM with Slit2 depletion significantly promoted HRGECs proliferation, migration, and tube formation. Pretreatment of HRGECs with Robo1 siRNA suppressed the activation of PI3K/Akt and HIF-1α/VEGF signaling and inhibited angiogenesis, whereas PI3K inhibitor suppressed HIF-1α/VEGF signaling, without influencing Robo1 expression. In the HRGECs treated with Slit2-N, Slit2-N time-dependently enhanced the activation of Robo1/PI3K/Akt/VEGF pathway but not HIF-1α activity, and promoted HRGECs proliferation, migration, and tube formation. The effects induced by Slit2 were also abolished by Robo1 siRNA and PI3K inhibitor. Taken together, our findings indicate that in a diabetic-like environment, in addition to mesangial cells, autocrine activation of Slit2/Robo1 signaling of HRGECs may contribute to angiogenesis of HRGECs through PI3K/Akt/VEGF pathway; therefore, Slit2/Robo1 signaling may be a potent therapeutic target for the treatment of abnormal angiogenesis in early DN and may have broad implications for the treatment of other diseases dependent on pathologic angiogenesis.

Keywords

Slit2/Robo1 signaling Angiogenesis Glomerular endothelial cells PI3K/Akt signaling HIF-1α/VEGF signaling Diabetic nephropathy 

Notes

Acknowledgements

We are grateful to Dr. Xiaohua Guo (University of Utah) for his invaluable advice and to Yunan Li for assistance in manuscript preparation.

Funding

This study was supported by the National Natural Science Foundation of China (No. 81370821), The National Key technology Research and Development (R&D) Program (No. 2015BAI12B05), and the Natural Science Foundation of Chongqing (No. cstc2013jjB10023).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Costa PZ, Soares R (2013) Neovascularization in diabetes and its complications. Unraveling the angiogenic paradox. Life Sci 92(22):1037–1045.  https://doi.org/10.1016/j.lfs.2013.04.001 CrossRefPubMedGoogle Scholar
  2. 2.
    Nakagawa T, Kosugi T, Haneda M, Rivard CJ, Long DA (2009) Abnormal angiogenesis in diabetic nephropathy. Diabetes 58(7):1471–1478.  https://doi.org/10.2337/db09-0119 CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56(4):549–580.  https://doi.org/10.1124/pr.56.4.3 CrossRefPubMedGoogle Scholar
  4. 4.
    de Vriese AS, Tilton RG, Elger M, Stephan CC, Kriz W, Lameire NH (2001) Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol 12(5):993–1000PubMedGoogle Scholar
  5. 5.
    Flyvbjerg A, Dagnaes-Hansen F, De Vriese AS, Schrijvers BF, Tilton RG, Rasch R (2002) Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes 51(10):3090–3094CrossRefPubMedGoogle Scholar
  6. 6.
    Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, Richardson C, Kopp JB, Kabir MG, Backx PH, Gerber HP, Ferrara N, Barisoni L, Alpers CE, Quaggin SE (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358(11):1129–1136.  https://doi.org/10.1056/NEJMoa0707330 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Levy A, Albiges-Sauvin L, Massard C, Izzedine H, Ederhy S, Bahleda R, Gomez-Roca C, Chargari C, Brocheriou-Spelle I, Soria JC (2012) Reappraisal of treatment-induced renal dysfunction in patients receiving antiangiogenic agents in phase I trials. Investig New Drugs 30(3):1116–1120.  https://doi.org/10.1007/s10637-011-9671-z CrossRefGoogle Scholar
  8. 8.
    Hayman SR, Leung N, Grande JP, Garovic VD (2012) VEGF inhibition, hypertension, and renal toxicity. Curr Oncol Rep 14(4):285–294.  https://doi.org/10.1007/s11912-012-0242-z CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Dickson BJ, Gilestro GF (2006) Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol 22:651–675.  https://doi.org/10.1146/annurev.cellbio.21.090704.151234 CrossRefPubMedGoogle Scholar
  10. 10.
    Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, Tang H, Wen L, Brady-Kalnay SM, Mei L, Wu JY, Xiong WC, Rao Y (2001) Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit–Robo pathway. Cell 107(2):209–221CrossRefPubMedGoogle Scholar
  11. 11.
    Ypsilanti AR, Zagar Y, Chedotal A (2010) Moving away from the midline: new developments for Slit and Robo. Development 137(12):1939–1952.  https://doi.org/10.1242/dev.044511 CrossRefPubMedGoogle Scholar
  12. 12.
    Hohenester E (2008) Structural insight into Slit–Robo signalling. Biochem Soc Trans 36(Pt 2):251–256.  https://doi.org/10.1042/BST0360251 CrossRefPubMedGoogle Scholar
  13. 13.
    Yuen DA, Robinson LA (2013) Slit2–Robo signaling: a novel regulator of vascular injury. Curr Opin Nephrol Hypertens 22(4):445–451.  https://doi.org/10.1097/MNH.0b013e32836235f4 CrossRefPubMedGoogle Scholar
  14. 14.
    Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, Qian KX, Duan S, Chen Z, Rao Y, Geng JG (2003) Induction of tumor angiogenesis by Slit–Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4(1):19–29CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou W, Yu W, Xie W, Huang L, Xu Y, Li X (2011) The role of Slit–Robo signaling in proliferative diabetic retinopathy and retinal pigment epithelial cells. Mol Vis 17:1526–1536PubMedCentralPubMedGoogle Scholar
  16. 16.
    Kang MK, Lim SS, Lee JY, Yeo KM, Kang YH (2013) Anthocyanin-rich purple corn extract inhibit diabetes-associated glomerular angiogenesis. PLoS ONE 8(11):e79823.  https://doi.org/10.1371/journal.pone.0079823 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Xing Y, Lai J, Liu X, Zhang N, Ming J, Liu H, Zhang X (2017) Netrin-1 restores cell injury and impaired angiogenesis in vascular endothelial cells upon high glucose by PI3K/AKT-eNOS. J Mol Endocrinol 58(4):167–177.  https://doi.org/10.1530/JME-16-0239 CrossRefPubMedGoogle Scholar
  18. 18.
    Patella F, Leucci E, Evangelista M, Parker B, Wen J, Mercatanti A, Rizzo M, Chiavacci E, Lund AH, Rainaldi G (2013) MiR-492 impairs the angiogenic potential of endothelial cells. J Cell Mol Med 17(8):1006–1015.  https://doi.org/10.1111/jcmm.12085 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Kitahara T, Hiromura K, Ikeuchi H, Yamashita S, Kobayashi S, Kuroiwa T, Kaneko Y, Ueki K, Nojima Y (2005) Mesangial cells stimulate differentiation of endothelial cells to form capillary-like networks in a three-dimensional culture system. Nephrol Dial Transplant 20(1):42–49.  https://doi.org/10.1093/ndt/gfh572 CrossRefPubMedGoogle Scholar
  20. 20.
    Kolluru GK, Bir SC, Kevil CG (2012) Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012:918267.  https://doi.org/10.1155/2012/918267 PubMedCentralPubMedGoogle Scholar
  21. 21.
    Rama N, Dubrac A, Mathivet T, Ni Charthaigh RA, Genet G, Cristofaro B, Pibouin-Fragner L, Ma L, Eichmann A, Chedotal A (2015) Slit2 signaling through Robo1 and Robo2 is required for retinal neovascularization. Nat Med 21(5):483–491.  https://doi.org/10.1038/nm.3849 CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Fish JE, Wythe JD, Xiao T, Bruneau BG, Stainier DY, Srivastava D, Woo S (2011) A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. Development 138(7):1409–1419.  https://doi.org/10.1242/dev.060046 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Piper M, Georgas K, Yamada T, Little M (2000) Expression of the vertebrate Slit gene family and their putative receptors, the Robo genes, in the developing murine kidney. Mech Dev 94(1–2):213–217CrossRefPubMedGoogle Scholar
  24. 24.
    Liu A, Dardik A, Ballermann BJ (1999) Neutralizing TGF-β1 antibody infusion in neonatal rat delays in vivo glomerular capillary formation 1. Kidney Int 56(4):1334–1348.  https://doi.org/10.1046/j.1523-1755.1999.00661.x CrossRefPubMedGoogle Scholar
  25. 25.
    Small EM, Sutherland LB, Rajagopalan KN, Wang S, Olson EN (2010) MicroRNA-218 regulates vascular patterning by modulation of Slit–Robo signaling. Circ Res 107(11):1336–1344.  https://doi.org/10.1161/CIRCRESAHA.110.227926 CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Chen X, Li J, Li M, Zeng M, Li T, Xiao W, Li J, Wu Q, Ke X, Luo D, Tang S, Luo Y (2013) KH902 suppresses high glucose-induced migration and sprouting of human retinal endothelial cells by blocking VEGF and PIGF. Diabetes Obes Metab 15(3):224–233.  https://doi.org/10.1111/dom.12008 CrossRefPubMedGoogle Scholar
  27. 27.
    Chaudagar KK, Mehta AA (2014) Effect of telmisartan on VEGF-induced and VEGF-independent angiogenic responsiveness of coronary endothelial cells in normal and streptozotocin (STZ)-induced diabetic rats. Clin Exp Hypertens 36(8):557–566.  https://doi.org/10.3109/10641963.2014.881842 CrossRefPubMedGoogle Scholar
  28. 28.
    Zeng Z, Huang WD, Gao Q, Su ML, Yang YF, Liu ZC, Zhu BH (2015) Arnebin-1 promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway. Int J Mol Med 36(3):685–697.  https://doi.org/10.3892/ijmm.2015.2292 CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Massacesi C, Di Tomaso E, Urban P, Germa C, Quadt C, Trandafir L, Aimone P, Fretault N, Dharan B, Tavorath R, Hirawat S (2016) PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. OncoTargets Ther 9:203–210.  https://doi.org/10.2147/OTT.S89967 CrossRefGoogle Scholar
  30. 30.
    Sasore T, Kennedy B (2014) Deciphering combinations of PI3K/AKT/mTOR pathway drugs augmenting anti-angiogenic efficacy in vivo. PLoS ONE 9(8):e105280.  https://doi.org/10.1371/journal.pone.0105280 CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Jacot JL, Sherris D (2011) Potential therapeutic roles for inhibition of the PI3K/Akt/mTOR pathway in the pathophysiology of diabetic retinopathy. J Ophthalmol 2011:589813.  https://doi.org/10.1155/2011/589813 PubMedCentralPubMedGoogle Scholar
  32. 32.
    Graupera M, Potente M (2013) Regulation of angiogenesis by PI3K signaling networks. Exp Cell Res 319(9):1348–1355.  https://doi.org/10.1016/j.yexcr.2013.02.021 CrossRefPubMedGoogle Scholar
  33. 33.
    Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9(6):677–684.  https://doi.org/10.1038/nm0603-677 CrossRefPubMedGoogle Scholar
  34. 34.
    Yu Z, Zhang T, Gong C, Sheng Y, Lu B, Zhou L, Ji L, Wang Z (2016) Erianin inhibits high glucose-induced retinal angiogenesis via blocking ERK1/2-regulated HIF-1α–VEGF/VEGFR2 signaling pathway. Sci Rep 6:34306.  https://doi.org/10.1038/srep34306 CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Shao Y, Lv C, Wu C, Zhou Y, Wang Q (2016) Mir-217 promotes inflammation and fibrosis in high glucose cultured rat glomerular mesangial cells via Sirt1/HIF-1α signaling pathway. Diabetes Metab Res Rev 32(6):534–543.  https://doi.org/10.1002/dmrr.2788 CrossRefPubMedGoogle Scholar
  36. 36.
    Isoe T, Makino Y, Mizumoto K, Sakagami H, Fujita Y, Honjo J, Takiyama Y, Itoh H, Haneda M (2010) High glucose activates HIF-1-mediated signal transduction in glomerular mesangial cells through a carbohydrate response element binding protein. Kidney Int 78(1):48–59.  https://doi.org/10.1038/ki.2010.99 CrossRefPubMedGoogle Scholar
  37. 37.
    Makino H, Miyamoto Y, Sawai K, Mori K, Mukoyama M, Nakao K, Yoshimasa Y, Suga S (2006) Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone. Diabetes 55(10):2747–2756.  https://doi.org/10.2337/db05-1683 CrossRefPubMedGoogle Scholar
  38. 38.
    Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res 77(3):638–643CrossRefPubMedGoogle Scholar
  39. 39.
    Gerber HP, Condorelli F, Park J, Ferrara N (1997) Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem 272(38):23659–23667CrossRefPubMedGoogle Scholar
  40. 40.
    Ben-Yosef Y, Miller A, Shapiro S, Lahat N (2005) Hypoxia of endothelial cells leads to MMP-2-dependent survival and death. Am J Physiol Cell Physiol 289(5):C1321–C1331.  https://doi.org/10.1152/ajpcell.00079.2005 CrossRefPubMedGoogle Scholar
  41. 41.
    Keely S, Glover LE, MacManus CF, Campbell EL, Scully MM, Furuta GT, Colgan SP (2009) Selective induction of integrin β1 by hypoxia-inducible factor: implications for wound healing. FASEB J 23(5):1338–1346.  https://doi.org/10.1096/fj.08-125344 CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Nomura M, Yamagishi S, Harada S, Hayashi Y, Yamashima T, Yamashita J, Yamamoto H (1995) Possible participation of autocrine and paracrine vascular endothelial growth factors in hypoxia-induced proliferation of endothelial cells and pericytes. J Biol Chem 270(47):28316–28324CrossRefPubMedGoogle Scholar
  43. 43.
    Skuli N, Liu L, Runge A, Wang T, Yuan L, Patel S, Iruela-Arispe L, Simon MC, Keith B (2009) Endothelial deletion of hypoxia-inducible factor-2α (HIF-2α) alters vascular function and tumor angiogenesis. Blood 114(2):469–477.  https://doi.org/10.1182/blood-2008-12-193581 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nephrology, Xinqiao HospitalThird Military Medical UniversityChongqingChina
  2. 2.Department of Pathology, Xinqiao HospitalThird Military Medical UniversityChongqingChina

Personalised recommendations